
January 22, 2025 16:58 WSPC/INSTRUCTION FILE
Akinade˙Barros˙Vernon˙IJHR

International Journal of Humanoid Robotics

© World Scientific Publishing Company

Biological Motion Aids Gestural Communication by

Humanoid Social Robots

Adedayo Akinade, Daniel Barros, and David Vernon

Carnegie Mellon University Africa

Kigali, Rwanda

aakinade, dbarros, dvernon@andrew.cmu.edu

Advances in social robotics have led to increased interest in designing robots that can

communicate effectively with humans through non-verbal gestures. One approach to

enhancing the naturalness and expressiveness of robot gestures is to incorporate bio-
logical motion, which mimics the velocity and acceleration profiles observed in human

gestures. This paper examines the use of biological motion for gestural communication
by humanoid social robots, focusing on the impact of biological motion on the perceived

warmth and effectiveness of robot gestures in fostering engagement while interacting with

these robots. The exercise involved implementing the minimum jerk model of biological
motion on a Pepper humanoid social robot and conducting user studies to evaluate the

impact of biological motion on human-robot interaction. The results show that incorpo-

rating biological motion cues can significantly increase the perceived warmth of robot
gestures and improve the overall effectiveness of gestural communication, resulting in

more natural and engaging human-robot interaction.

Keywords: Human-robot interaction; social robotics; biological motion; minimum jerk;
two-thirds power law.

1. Introduction

Social robots are designed to be autonomous or semi-autonomous machines that

engage with people through social interactions, aiming to communicate in ways

that adhere to human social and cultural norms.1 One of the primary goals in

developing these robots is to enhance user experience by enabling natural and in-

tuitive communication. Ideally, social robots are envisioned to understand and re-

spond to human emotions, intentions, and social cues with a degree of social and

emotional intelligence.2 While many current systems demonstrate some level of so-

cial competency and the ability to maintain basic social bonds through imitation

and interaction, the field aspires to further capabilities such as genuine individual-

ity, social learning, and adaptive behavior that responds to the social environment

and individual needs.3,4 These characteristics, though central to the goals of social

robotics, remain a blend of realized features and ongoing challenges in advancing

human-robot social interaction.

Social robots can have a positive impact on society in fields like healthcare,5

1
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education,6,7 and elderly care,8 where they are being used to support and help

people in a variety of contexts. For example, they are used in healthcare to pro-

vide patients company, emotional support, and medication reminders. They are also

used in education as instructional aids to improve student engagement and learning

experiences through interactive, individualized activities, helping to improve educa-

tional results and provide a suitable learning environment by offering personalized

support and feedback.9

The field of human-robot interaction (HRI) focusses on modelling and imple-

menting effective interaction between humans and robots, with robots comprehend-

ing needs of humans and reacting to social cues.10 By leveraging insights from social

cognition, psychology, and neuroscience, HRI research aims to improve human-robot

interactions by making them more efficient, meaningful, and natural,11 developing

robots that can engage humans in a human-like manner, establishing rapport, and

fostering trust by exhibiting empathetic behavior.12

Nonverbal communication is a key aspect of such human interaction. This in-

cludes body language, gesture, and facial expression. These cues improve inter-

personal communication by conveying an array of information.13,14 Complementing

linguistic communications, they provide social and emotional cues that can improve

interpersonal communication.15,16 Gestures and facial expressions can enhance ver-

bal communication by expressing emotions, intentions, and emphasis.13,14 Even

though the significance of nonverbal communication in human-robot interaction

is widely acknowledged, existing approaches to incorporating these skills in social

robots frequently fail to capture the expressive and organic nature of human body

language and gestures.

Biological motion has the potential for developing more expressive, natural, and

socially engaging robotic motions by making the robots appear more natural and

comfortable for humans to interact with.17 The term describes the organic, realistic

characteristics of human and animal movement, which is distinguished by fluidity,

coordination, and expressiveness,18 as opposed to the jerky and squared motion ex-

hibited by robotic actions.19 Complicated spatiotemporal patterns that control the

movement of many body components are fundamental to biological motion. When

it comes to the perception of naturalness and expressiveness in movements, human

gestures and body language demonstrate complex coordination between the limbs,

torso, and head with subtle changes in timing, velocity, and acceleration. Complex

musculoskeletal mechanisms and neuromotor control systems that underpin human

movement produce these biological motion patterns.18 These characteristics may

be used to design and regulate the motions of social robots, allowing the creation

of robotic gestures and behaviors that are more akin to the subtlety and fluidity

of human nonverbal communication.20 The coordinated limb motions, recognizable

velocity profiles, and delicate anticipatory and transitional dynamics that charac-

terize real human motion may all be replicated in this way.21 While the goal of

a movement plays a vital role in engaging interactions, the movement kinemat-
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ics, e.g., the velocity profile might also vary the degree of motor resonance evoked

in the interaction partner, which has been linked to humans’ ability to engage in

interactions with other partners, resulting in ‘mutual understanding’.19

The goal of the research described in this article is to enhance the social inter-

action capabilities of a humanoid robot through the implementation and evaluation

of gestures which comprise movements that exhibit the characteristics of biologi-

cal motion, thereby improving its naturalness and warmth as perceived by human

partners in human-robot interactions.

2. Models of Biological Motion

There are two principal approaches to modelling biological motion: the Two-Thirds

Power Law and the Minimum Jerk model. We discuss both approaches in the fol-

lowing.

2.1. Two-Thirds Power Law

The Two-Thirds Power Law22,23,24,25,26 has been shown to characterize many

kinds of human movement, including locomotion27 and ocular motion.28. The

perception29,28,30 and anticipation31 of human motion are also characterized by

this law. The isogony principle, which states that people’s movements generally

span identical angles in equal amounts of time regardless of the true arc length of

the spatial trajectory, shows a strong link between the velocity profile and curva-

ture of human motion. The Two-Thirds Power Law formalizes this relationship, as

follows:

V (t) = K(t)

(
R(t)

1 + αR(t)

)β

(1)

where V (t) is the tangential velocity at time t and R(t) is the radius of curvature

at that same instant.

The value of the β exponent, which has been empirically demonstrated to be in

agreement with the value of 1
3 over a large class of human motion, demonstrates

the regularity of human motion.24,32,22 The remaining two variables in the equation

are K(t) > 0 and α ∈ [0, 1]. When there are no points of inflection on the trajectory,

K(t) is zero; otherwise, it is determined by the motion’s average velocity. The second

variable α, sometimes referred to as the velocity gain factor, is influenced by the

speed and duration of the motion.23,33 Experiments have shown that only one value

of K is insufficient to explain the data for longer or uncontrolled motions, even if

its exact role is still unknown. It has been highlighted24,34 how its value typically

stays constant for quite lengthy portions of the trajectories and tends to alter in

accordance with junction points of inflection.

In the case where α = 0, the law can be simplified as:

V (t) = K(t)R(t)β (2)



January 22, 2025 16:58 WSPC/INSTRUCTION FILE
Akinade˙Barros˙Vernon˙IJHR

4 A. Akinade, D. Barros, and D. Vernon

from which we can derive the alternative formulation

A(t) = K(t)C(t)1−β = K(t)C(t)
2
3 (3)

hence, the two-thirds power law formulation, where A(t) = V (t)
R(t) is the angular

velocity, while C(t) = 1
R(t) is the curvature.

2.2. Minimum-Jerk Model

The two-thirds power law is predicated on two assumptions: (a) the motor con-

trol system has access to a spatial plan before the motion begins, and (b) many

immediate and kinematics elements of the motion are explicitly limited by the geo-

metrical characteristics of the true planned trajectory.33 Therefore, the two-thirds

power law does not explicitly address the question of trajectory development. Con-

versely, in certain motion planning approaches that deviate from the motor pro-

gram convention, the constraints that are intended to match the general qualitative

characteristics of the motor system result in a much more global setting, which

causes an appropriate loss in the degrees of freedom. Specifically, a number of

researchers35,36,37,38,39 have examined the effects of assuming that point-to-point

motion adheres to a global minimum-cost constraint.

Natural motion – and, more significantly, hand motion – tends to appear fluid

and elegant unless there are certain, limiting conditions. Then, it is possible to

hypothesize that this distinguishing trait relates to a design concept, meaning that

the motor system plans end-point motions based on a requirement of maximal

smoothness.40 This requirement allows one to formulate a motor control policy. In

order to do this, a cost function (CF ) proportional to the mean square of jerk (the

derivative of acceleration) is defined as follows:

CF =
1

2

∫ t2

t1

[(
d3x

dt3

)2

+

(
d3y

dt3

)2
]
dt (4)

If the associated parametric models of the motor control policy minimize the cost

CF , the motion is “maximally smooth”. It can be shown that this minimal re-

quirement plus a suitable set of boundary conditions can be satisfied by a pair of

parametric equations.

The minimum-jerk model suggests that the motor control system uses this spe-

cific pair for creating a trajectory. This is an optimal control problem with interior

point equality constraints,33 which generates a closed-form analytical solution in the

relevant case corresponding to the movement from an initial point Q1 = (x1, y1)

to a final point Q3 = (x3, y3) via an intermediate position Q2 = (x2, y2). Fifth-

order polynomial functions of time are used to represent the motion’s horizontal
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and vertical components:

x(t) =

5∑
k=0

ckxt
k + p1x(t− t2)

4 + p2x(t− t2)
5
+

y(t) =

5∑
k=0

ckyt
k + p1y(t− t2)

4 + p2y(t− t2)
5
+

(t− t2)+ =

{
(t− t2) if t ≥ 2,

0 if t < 2

(5)

where t2 is the transit time via the via-point. The following set of boundary con-

ditions can be used to compute the coefficients {ckx, cky; k = 0, 5 }, p1x, p2x, p1y,
and p2y: time, position, velocity, and acceleration at Q1 and Q3, and position and

velocity (or simply position) at Q2.

The resultant model is both time homogenous and scalable, meaning that shifts

in time scale have no effect on the trajectory and are expressed proportionally in

the kinematic parameters. It is invariant with regard to rotations and translations

of the locations Q1, Q2, and Q3. It needs to be emphasized that the boundary

and minimum criteria work together to define the travel time t2 at the via-point.

As a result, the model forecasts the movement’s underlying temporal structure

quantitatively. Specifically, by predicting how the relative duration (t2–t1)/(t3–t1)

of the first part of the movement (up to the via-point) varies as a function of

the corresponding relative length of the trajectory (s2–s1)/(s3–s1), one can test

the ability of the model to simulate the phenomenon of local isochrony. These

predictions were found to be in agreement with the experimental results.35

2.3. Decoupled Minimum-Jerk Model

The minimum-jerk profile has some limitations, such as the lack of variability and

adaptability to different situations and targets.41 Huber et al.42 proposed a novel

trajectory generator for HRI, based on a variation of the minimum-jerk profile, a

decoupled minimum-jerk model. The authors introduced a parameter that controls

the curvature of the trajectory, allowing the robot to approach the target from

different angles. The trajectory generator was evaluated in a simple hand-over task,

using a humanoid robot arm and a human participant. The authors used a post-

test questionnaire to measure the human’s comfort and acceptance of the robot’s

motion, as well as their perception of the robot’s human likeness and safety. The

results showed that the novel trajectory generator was comparable to the traditional

minimum-jerk profile in terms of comfort, human likeness, and subjective safety

while offering some advantages in the target approach. The authors concluded that

their trajectory generator can be used to generate more expressive and adaptive

motion for robots in HRI.

The decoupled minimum-jerk model treats the XY and Z components of the

3D trajectory separately and by doing this decouples the height component of the
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movement from the planar component. This leads to a more human-like trajectory.

The literature has shown that if we decouple the z-axis motion from the xy-plane

motion by specifying two minimum jerk trajectories with different durations for the

two components, we obtain a curved trajectory that more closely resembles human

handover reaching motions as the ending portion of the trajectory is still straight.

This Decoupled Minimum Jerk trajectory is described by:

rz(t) =

5∑
k=0

akzt
k

rxy(t) =

5∑
k=0

akxyt
k

(6)

where rz(t) is the trajectory in the z direction, with duration tz, and rxy(t) is the

trajectory in the xy plane, with duration txy. The coefficients aiz and aixy are again

determined by boundary conditions. The decoupled minimum jerk trajectory results

in a curved path in 3D space, residing in a plane orthogonal to the xy plane. The

ratio between tz and txy is determined through optimization.

3. Biological Motion Trajectory Generation

For each gesture, the trajectory planning generates a trajectory that starts and ends

smoothly, with minimal acceleration and deceleration. The trajectory is designed to

be continuous and differentiable, ensuring that the robot’s movements are smooth

and natural. For a particular trajectory x1(t) that starts at time ti and ends at time

tf , the smoothness can be measured by calculating a jerk cost:

∫ tf

t=ti

...
x 1(t)

2dt (7)

Note that jerk cost is a scalar; the expression above assigns a number to the

function x1(t). Hogan showed what function x(t) most smoothly connects a starting

point to a target in a given amount of time.43 This function x(t), among all possible

functions, has the minimum jerk cost. The form of the minimum jerk movement

trajectory is a fifth-order polynomial in time:

θ(t) = a0 + a1t+ a2t
2 + a3t

3 + a4t
4 + a5t

5 (8)

where a0, ..., a5 are constants.

The details of a specific movement depend on its boundary conditions. A suf-

ficient set of boundary conditions consists of the position (θ), velocity (θ̇), and

acceleration (θ̈) at the start of the movement (t = 0) and at the finish (t = d).

The movements to be modeled start and finish at rest; thus the chosen boundary

conditions for this point-to-point movement are as follows:
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θ(0) = ps; θ̇(0) = 0; θ̈(0) = 0

θ(d) = pf ; θ̇(d) = 0; θ̈(d) = 0
(9)

where ps is the start position, pf is the final position of the trajectory, θ is the

position, θ̇ is the velocity, and θ̈ is the acceleration.

Solving for the constants a0, ..., a5 yields the following equation for the position

(θ), velocity (θ̇), and acceleration (θ̈):

θ(t) = ps + k
[
10(t/d)

3 − 15(t/d)
4
+ 6(t/d)

5
]

θ̇(t) =
k

d

[
30(t/d)

2 − 60(t/d)
3
+ 30(t/d)

4
]

θ̈(t) =
k

d2

[
60(t/d)− 180(t/d)

2
+ 120(t/d)

3
]

0 ≤ t ≤ d

(10)

where k is the movement amplitude given by k = pf − ps.

Equation 8 shows that the shape of the predicted movement trajectory does

not change with the amplitude or duration of the movement. Changes in movement

amplitude or duration merely serve to change the scale of the position and time

axes, respectively. The following characteristics of the movement may be derived:

Maximum velocity = 1.88a/d

Maximum acceleration = 5.77a/d2
(11)

It can be seen from Equation 10 that if the movement duration remains con-

stant, the peak absolute acceleration will scale with movement amplitude. Within

the limits of experimental accuracy, the minimum-jerk movement profile yields good

qualitative and quantitative agreement with observed undisturbed movement pro-

files.

4. Gesture Execution and Control

Based on the expressions for joint angle position, joint angle velocity and joint angle

acceleration in Equation 8 above, a trajectory generation module computed desired

joint angle trajectories based on the selected gesture and its parameters. These tra-

jectories were subsequently transformed into joint-level commands through inverse

kinematics and motion control, ensuring smooth execution by a Pepper robot. The

architecture of the gesture control system is shown in Figure 1.

Given a goal coordinate xp, yp, zp in three-dimensional space representing a lo-

cation is space to which the Pepper robot is to point, i.e., perform a deictic gesture,

Algorithm 1 sets out the computational process whereby the deictic gesture is ex-

ecuted. The inverse kinematics are used to estimate the joint angles required to
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Fig. 1: Architecture of the Gesture Control System

achieve this gesture. These joint angles are passed through the forward kinematics

and the joint angle that produces the closest 3D position to the goal coordinates

is selected. The trajectory is computed for the arm to move from the current joint

states to the required joint angle, taking into consideration the required gesture

duration. The trajectory information contains the positions, velocities and acceler-

ations at the different points along the trajectory. This information is sent to the

action server, along with the action client created for the actuator. The action server

sends the required information to each of the joints of the actuator (shoulder, elbow

and wrist).

Algorithm 1 Gesture Execution Algorithm

Require: biologicalMotionF lag, actuatorJoint, gestureDuration, xp, yp, zp
Ensure: gestureDuration > 0

x← xp
y ← yp
z ← zp
jointAngles← inverseKinematics(x, y, z) ▷ Compute the joint angles
for jointAngle in jointAngles do

xf , yf , zf = forwardKinematics(jointAngle) ▷ Obtain the position
if xf , yf , zf = x, y, z then ▷ JointAngle is valid

break
else

status← 0
return status

end if
end for
jointClient← createClient(actuatorJoint) ▷ Create ROS actionClient
if biologicalMotionF lag is True then

Positions, V elocities, Accelerations← computeTrajectory(jointAngle)
status← moveActuator(jointClient, Positions, V elocities, Accelerations)

else
status← moveActuator(jointClient, jointAngle) ▷ Move the joint

end if
return status
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Throughout the execution and control process, safety and robustness were prior-

itized. It was ensured that the limits to the joint angles defined by the manufacturer

for all joints were taken into consideration.

5. Algorithm Implementation

The implementation of the decoupled minimum jerk model involves several key

steps, including trajectory planning, motion control, and integration with the Pep-

per robot’s software framework. The algorithms and techniques used to implement

biological motion are discussed in this section.

Each gesture is defined by a set of key points that specify the desired position

and orientation of the robot’s end effector (e.g., hand or head) at specific times.

The minimum jerk model is then used to interpolate between these key points,

generating a smooth trajectory that the robot follows to perform the gesture.

To incorporate the minimum jerk model into the Pepper robot’s software frame-

work, a trajectory planning module that takes as input the key points for each

gesture and generates the corresponding trajectories, was developed. These trajec-

tories are then executed by the robot’s motion control system, which ensures that

the robot follows the planned trajectory accurately and smoothly. By using the

minimum jerk model, the gestures executed are not only smooth and natural but

also highly customizable. The model allows for the control of various aspects of the

gesture, such as speed, acceleration, and curvature, providing fine-grained control

over the robot’s movements.

The implementation of the biological motion for gesture execution on the Pepper

robot is realised as a ROS node that provides a ROS service which listens for requests

to the gesture service and executes the requested gesture based on the parameters

provided. To interact with the gesture service, a client node sends requests to the

service with the required gesture parameters, as follows.

• Gesture type: the type of gesture to be executed (i.e., deictic, iconic, sym-

bolic, bow, or nod).

• Duration: the duration of the gesture, controlling the speed at which the

gesture is performed.

• Bow or nod angle: the torso angle at which the robot should bow or the

head angle at which the robot should nod.

• Target coordinate: the target coordinate in the world that the robot should

point to, if the gesture is a deictic pointing gesture.

The client nodes are other elements of a complete system architecture for ex-

ecuting social robot missions.44 The gestureExecution ROS node processes service

requests from the behaviorController ROS node and subscribes to a ROS topic pub-

lished by the robotLocalization ROS node to allow deictic gestures to be performed

relative to the Pepper robot’s current position and orientation. The gestureExecution

ROS node can also send service requests to the overtAttention ROS node to direct

the robot’s gaze towards the location to which a deictic gesture points.



January 22, 2025 16:58 WSPC/INSTRUCTION FILE
Akinade˙Barros˙Vernon˙IJHR

10 A. Akinade, D. Barros, and D. Vernon

6. Integration with Pepper Robot

The integration of the gesture execution module with the Pepper robot’s existing

software framework is crucial for ensuring seamless communication and coordina-

tion between different components of the system. Robot Operating System (ROS)

actions provide a sophisticated mechanism for handling time-extended, preempt-

able tasks in robotic systems. Built upon the foundation of ROS topics and ser-

vices, actions offer a flexible interface for executing complex behaviors that may

require ongoing monitoring and potential cancellation. The action framework in

ROS is structured around a client-server model. The action client, typically a high-

level control node, sends goal requests to the action server, which is responsible

for executing the task. This model facilitates the implementation of long-running

operations while maintaining system responsiveness.

ROS actions coordinate complex behaviours that require feedback and goal com-

pletion. For example, the execution of a pointing gesture may require the robot to

reach a specific target coordinate in the world. A ROS action server is used to han-

dle this behaviour, allowing the robot to move its arm and hand in a coordinated

manner to point towards the target. The gesture execution module controls the

robot’s actuators, such as motors and joints, to execute the planned trajectories.

The gesture execution ROS node, gestureExecution, exploits a two-tiered approach

to robot control, combining the ROS service for high-level command processing,

i.e., gesture invocation by client node (specifically, the behaviorController ROS node

in the system architecture44), with ROS actions for low-level joint actuation. This

approach provides a flexible and efficient method for controlling the robot’s move-

ments. The hosted service acts as an interface layer, accepting control commands

from the clients. When invoked, this service processes the incoming requests, trans-

lating them into appropriate commands for the robot. This abstraction layer allows

for easy integration with various client applications and provides a standardized en-

try point for robot control. Upon receiving a control command, the hosted service

initiates the appropriate ROS action to actuate the robot’s joints. This relationship

can be described as follows:

(1) Command Reception: The hosted service receives a request from a client.

(2) Command Processing: The service interprets the command and determines

the required joint movements.

(3) Action Initiation: The service then triggers the corresponding ROS action,

sending a goal that specifies the desired joint positions or movements.

(4) Joint Actuation: The ROS action server, responsible for direct communica-

tion with the robot’s hardware, executes the goal by actuating the joints.

(5) Feedback and Monitoring: Throughout the execution, the ROS action pro-

vides feedback to the service, allowing for real-time monitoring of the task’s

progress.

(6) Result Reporting: Upon completion, the ROS action returns the result to

the service, which can then relay the outcome back to the client.
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This architecture leverages the strengths of both components: the hosted service

provides a high-level, easily accessible interface for control, while the ROS action

system handles the complexities of real-time joint actuation and monitoring. By

using ROS actions for the actual joint control, we benefit from their preemptable

nature and detailed feedback mechanisms, ensuring responsive and adaptable robot

behavior. Moreover, this separation of concerns enhances the system’s modularity.

The hosted service can be updated or replaced without altering the underlying ROS

action implementation, and vice versa, facilitating easier maintenance and future

upgrades of the control system.

7. Experimental Design

The experimental design consisted of three interconnected experiments aimed at

evaluating the execution and perception of motion profiles in the Pepper humanoid

robot. The first experiment focused on verifying the robot’s adherence to the in-

tended motion profiles, biological and trapezoidal, by analyzing joint state data, in-

cluding generated commands and measured positions and velocities, for the robot’s

right arm. The second experiment investigated the robot’s wrist motion during ges-

ture execution using a RealSense RGB-D camera, analyzing the spatial trajectory

and velocity in 3D space to assess the smoothness and consistency of the two motion

profiles. The third experiment explored human perception of the robot’s gestures

through user studies, evaluating subjective responses across warmth and discom-

fort dimensions using the Robotic Social Attributes Scale (RoSAS).45 Together,

these experiments provided a holistic understanding of the robot’s physical motion

accuracy, trajectory characteristics, and their impact on human perception.

In all three experiments, there are two conditions, as follows.

Condition 1: Non-biological (control) gestures.

In the control condition, participants observed the Pepper robot performing

a set of gestures generated without the incorporation of biological motion

principles. These gestures were executed using a trapezoidal motion profile,

which lacked the natural fluidity and expressiveness of the biological motion

profile.

Condition 2: Biological motion profile. In this condition, participants ob-

served the Pepper robot performing a similar set of gestures using the

biological motion model implemented in this research. These gestures in-

cluded deictic (pointing) gestures, as well as body gestures such as bowing

and nodding.

7.1. Verification of Motion Profile Execution through Joint State

Analysis

The first experiment aimed to evaluate the execution of the motion pro-

files—biological motion and trapezoidal motion—on the Pepper humanoid robot
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by analysing the generated commands and the measured joint states. The primary

objective was to verify whether the robot accurately carried out the intended mo-

tion profiles and to assess the differences between the execution of these profiles.

The experiment was conducted using the right arm of the Pepper robot, under the

assumption that the arms of the robot are symmetric. It is therefore expected that

the results observed for the right arm would also hold for the left arm, eliminating

the need for duplicate experimentation on both arms.

The Pepper robot was programmed to execute a pre-defined deictic gesture

with its right arm, specifically using four joints: shoulder roll, shoulder pitch, elbow

yaw, and elbow roll. Commands were generated for both motion profiles, and the

following data were recorded:

(1) Generated Commands: the trajectory positions and velocities defined for

both motion profiles.

(2) Measured Joint States: the actual trajectory positions and velocities as

executed by the robot, recorded from its joint sensors.

To account for potential measurement noise in the robot’s sensors, the trajectory

position data from the measured joint states were denoised using a Gaussian filter

with a sigma value of 3. This step ensured smoother data for more accurate com-

parison against the generated commands. Since the trapezoidal motion profile lacks

explicit velocity constraints, velocity commands were only generated for the bio-

logical motion profile. However, to evaluate velocity performance for both motion

profiles, the measured joint velocities were computed using a finite difference gradi-

ent method with a stencil size of 3. This approach enabled a consistent comparison

between the velocity characteristics of the two profiles.

The recorded data were analyzed to assess the robot’s ability to execute the

specified motion profiles in two ways, as follows:

(1) Comparison of Trajectory Positions: the generated and measured positions

for each joint were compared to verify adherence to the respective motion

profiles.

(2) Comparison of Velocity Profiles: the velocity commands for the biological

motion profile were compared against the computed velocities from the mea-

sured joint states. Additionally, the velocity profile of the measured joint

states was analyzed to assess differences between trapezoidal and biological

motion profiles.

7.2. Trajectory and Velocity Analysis of Wrist Motion During

Gesture Execution

In the second experiment, the motion of the Pepper robot’s wrist was analyzed

during gesture execution using two distinct motion profiles: biological and trape-

zoidal. An ArUco marker was attached to the robot’s wrist, and an Intel RealSense
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RGB-D camera was used to track its motion. The camera was positioned horizon-

tally at a distance of 1.1 meters from the robot, ensuring a clear view of the robot’s

movements. The trajectory of the wrist was recorded in three-dimensional space,

capturing its positions along the x, y, and z axes during the gestures.

To evaluate the velocity profile of the wrist motion, the recorded positional

data was processed using a finite-difference gradient with a stencil size of three.

This allowed for accurate computation of the velocity trajectories for each axis.

The experiment aimed to compare the trajectory and velocity profiles of the wrist

between the biological and trapezoidal motion profiles, providing insights into the

kinematic differences and smoothness of the two motion execution methods.

To ensure robustness, the trajectories were captured over ten repeated trials for

each motion profile. Velocity profiles of the wrist were also computed by taking the

finite-difference gradient of the positional data, with a stencil size of three to en-

hance accuracy. Furthermore, statistical metrics, including the mean and standard

deviation of the trajectory and velocity profiles, were calculated for each axis (x, y,

and z) to quantify the variability in motion.

The analysis was conducted to compare the biological and trapezoidal motion

profiles, focusing on differences in smoothness, consistency, and adherence to the

intended trajectories. This data provided insights into the kinematic characteristics

of the robot’s wrist motion, contributing to a deeper understanding of the physical

differences between the two motion profiles.

7.3. Evaluation of User Perception

The third experiment aimed to evaluate the impact of biologically inspired motion

on the perceived social attributes of the Pepper humanoid robot. This was achieved

through a controlled user study where participants observed the robot executing

gestures using two distinct motion profiles: biological and non-biological (trape-

zoidal). The evaluation employed the Robotic Social Attributes Scale (RoSAS), a

well-established tool in social robotics research, to assess dimensions of warmth and

discomfort, which are critical for understanding human-robot interaction dynamics.
45,46,47,48

In this study, seventeen participants (seven females and ten males), who were

graduate students at Carnegie Mellon University Africa in Rwanda, were recruited

and exposed to a within-subjects experimental design. Each participant observed

the Pepper robot perform a deictic gesture executed under two conditions: (1) a

trapezoidal motion profile, which lacked the smoothness and natural characteristics

of biological motion, and (2) a biological motion profile, which utilized the minimum

jerk model to mimic natural human movement. Figure 2 shows the Pepper robot

performing a gesture during the experiment. The study followed a within-subjects

design, where each participant was exposed to two experimental conditions, without

prior knowledge of what the gestures executed in each conditions entailed. It is

important to note that nine of the participants had no prior experience working

with humanoid robots, while the other eight had some experience.
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Fig. 2: The Pepper robot performing a deictic pointing gesture during the experi-

ment. Note that the robot’s gaze is directed to the object to which it is gesturing.

The picture is taken from the perspective of the user in the study.

The order of the conditions was randomly assigned to participants to mitigate

potential order effects. Participants were randomly assigned to either observe the

gestures executed using biological motion first, followed by the control gestures,

or vice versa. As a result, ten of the participants observed the trapezoidal motion

profile first, while the other seven participants observed the biological motion profile

first.

After observing the robot’s gestures in each condition, participants were asked

to complete a survey based on RoSAS. The survey instrument consisted of nineteen
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questions, with eleven questions evaluating the warmth dimension and eight ques-

tions assessing the discomfort dimension. The warmth dimension encompassed at-

tributes like naturalness, fluidity, expressiveness, and friendliness, while discomfort

captured impressions such as awkwardness, unease, and unnaturalness. Participants

rated their perceptions using a seven-point Likert scale (1 = strongly disagree, 7 =

strongly agree).

This experimental design enabled a direct comparison of human perception of

the robot’s gestures under both motion profiles. By analyzing participants’ re-

sponses, the study sought to determine whether biologically inspired motion en-

hanced the perceived warmth of the robot and reduced discomfort, thereby ad-

vancing our understanding of how motion profiles influence social perceptions of

humanoid robots. The evaluation framework builds on previous applications of

RoSAS in social robotics, which have demonstrated its utility in measuring social

traits like anthropomorphism, competence, and engagement across diverse contexts

and cultural settings.49,50

8. Results

This section presents the outcomes of three interrelated experiments conducted

to evaluate the effectiveness of the biologically inspired motion model relative to

the conventional trapezoidal motion model. Together, these experiments provide

a complementary assessment of the proposed approach, integrating both objective

performance metrics and subjective user evaluations.

The first experiment entailed a quantitative analysis of joint behaviour, wherein

the robot’s generated and measured commands were compared in terms of joint

positions and velocities. This analysis was aimed at evaluating the fidelity of joint

execution and the robot’s ability to adhere to planned motion trajectories, thus

providing insight into the robustness of the control system under each motion profile.

The second experiment involved a detailed motion analysis of the robot’s end-

effector, focusing on the trajectory and velocity of the wrist during gesture execu-

tion. This experiment sought to quantify differences in motion smoothness, continu-

ity, and naturalness between the biologically inspired and trapezoidal trajectories,

thereby shedding light on the biomechanical implications of the proposed model.

To assess repeatability, we present the mean, standard error, and variance for the

trajectory across multiple repetitions

The third experiment consisted of a user study designed to evaluate human per-

ceptions of the robot’s gestures under both motion profiles. Using the Robotic Social

Attribute Scale (RoSAS), participants assessed the robot’s warmth and discomfort

dimensions. This subjective evaluation complements the objective data by examin-

ing how the differences in motion profiles influence the perceived social attributes

of the robot.

This section integrates findings from joint behavior analysis, motion trajectory

evaluation, and user studies to provide a holistic assessment of the proposed bi-
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ologically inspired motion model. The results are organized into subsections that

detail the methodology, statistical analysis, and key findings of each experiment,

highlighting the significant differences between the motion profiles.

8.1. Robot Joint Performance during Gesture Execution

This experiment aimed to evaluate the alignment between the robot’s generated

joint commands and its measured joint behaviour during gesture execution under

both biological and trapezoidal motion profiles. The analysis (shown in Figure 3

below) focused on four key joints of the Pepper robot: shoulder roll, shoulder pitch,

elbow yaw, and elbow roll. The comparison considered the positions and velocities

of each joint, providing insights into the robot’s ability to execute commands with

high fidelity across different motion profiles.

Figure 3a provides a comparison of the generated and measured joint positions

during the execution of gestures with the trapezoidal motion profile. While the over-

all alignment is satisfactory, the trapezoidal motion profile exhibits sharper transi-

tions in joint positions, leading to noticeable discrepancies between the generated

and measured values. These sharp transitions are inherent to the profile’s kinematic

characteristics and contribute to less fluid motion compared to the biological profile.

Figure 3b illustrates the comparison between the generated and measured joint

positions for each of the four robot joints during the execution of gestures with the

biological motion profile. The data reveals a close alignment between the generated

and measured values, indicating the robot’s ability to effectively replicate the de-

sired joint trajectories. Minor deviations observed in the measured positions can be

attributed to hardware limitations and dynamic interactions during execution.

Figure 3c shows the comparison between the generated and measured joint ve-

locities for the biological motion profile. The velocity data demonstrates consistent

performance across all joints, with the measured velocities closely following the gen-

erated commands. Notably, the biological motion profile resulted in smooth velocity

transitions, reflecting its effectiveness in mimicking human-like movement. Devia-

tions in the measured velocities, while minimal, highlight the challenges in achieving

perfect dynamic accuracy under varying operational conditions.

Figure 3d presents a direct comparison of the measured joint velocities for

the biological and trapezoidal motion profiles. The biological profile demonstrates

smoother velocity curves with gradual accelerations and decelerations, in contrast

to the trapezoidal profile, which shows abrupt changes at transition points. These

findings support the hypothesis that the biological profile produces more fluid and

natural motion, while the trapezoidal profile introduces mechanical rigidity

8.2. Motion Analysis of Robot Wrist Trajectory

This experiment aimed to analyze the trajectory of an ArUco marker, which was

placed on the Pepper robot’s wrist during gesture execution. Using a RealSense

RGB-D camera, the Cartesian (x, y, z) coordinates of the robot wrist were tracked as
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(a) Proprioceptive position plots demonstrating the Pepper robot’s controller tracking
the trapezoidal motion trajectory (blue). Measured positions (red) are denoised using a
Gaussian filter (σ = 3).

(b) Proprioceptive position plots demonstrating the Pepper robot’s controller tracking the
biological motion trajectory (blue). Measured positions (red) are denoised using a Gaussian
filter (σ = 3).

(c) Proprioceptive velocity plots demonstrating the Pepper robot’s controller tracking the
trapezoidal motion trajectory (blue). Measured velocities (red) are computed using a finite
difference gradient with a stencil of 3.

(d) Comparison of velocities derived from measured positions during control with trape-
zoidal (red) and biological (blue) motion. Velocity computation uses a finite difference
gradient with a stencil of 3.

Fig. 3: Comparison of generated and measured commands for four robot joints (shoulder
roll, shoulder pitch, elbow yaw, elbow roll) during gesture execution. (a) Joint positions
for the biological motion profile, (b) Joint velocities for the biological motion profile, (c)
Joint positions for the trapezoidal motion profile, and (d) Comparison of joint velocities
between biological and trapezoidal motion profile.
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the gestures were executed with both the biological and trapezoidal motion profiles.

The analysis (shown in Figures 4 and 5 below) focused on comparing the positions

and velocities of the wrist trajectory under the two motion profiles, along with an

evaluation of their variability across multiple runs.

Figure 4a illustrates the trajectory positions of the robot’s wrist in the (x, y, z)

coordinates during gesture execution. The comparison between the biological and

trapezoidal motion profiles highlights distinct differences in trajectory smoothness.

The biological motion profile generates smoother and more continuous wrist tra-

jectories, closely following the desired path, whereas the trapezoidal motion profile

exhibits sharper transitions and deviations at key points along the trajectory.

Figure 4b presents the wrist trajectory velocities for the (x, y, z) coordinates

under both motion profiles. The biological motion profile demonstrates gradual

changes in velocity, indicative of its human-inspired design. In contrast, the trape-

zoidal motion profile shows abrupt velocity transitions at points where acceleration

and deceleration occur, resulting in less fluid motion. These findings reinforce the

hypothesis that the biological motion profile is better suited for applications requir-

ing natural and human-like movements.

Figure 5a depicts the mean and standard deviation of the wrist trajectory positions

in the (x, y, z) coordinates over ten independent runs for both motion profiles. The

biological motion profile exhibits lower variability across runs, suggesting higher

consistency and reproducibility in trajectory execution. In contrast, the trapezoidal

motion profile demonstrates larger standard deviations, indicating higher sensitivity

to dynamic and environmental factors during execution.

Figure 5b shows the mean and standard deviation of the wrist trajectory veloc-

ities in the (x, y, z) coordinates over ten independent runs. Similar to the position

analysis, the biological motion profile results in lower velocity variability, support-

ing its effectiveness in delivering consistent and predictable motion. The trapezoidal

profile, however, shows larger variability, which may impact the perceived reliability

and predictability of the robot’s gestures.

8.3. User Response Evaluation

This section presents an analysis of the survey data collected to evaluate the im-

pact of biologically inspired gestures on the perceived social attributes of the Pep-

per robot, focusing on the warmth and discomfort dimensions as measured by the

Robotic Social Attributes Scale (RoSAS). We begin by outlining the statistically

significant differences observed between the two gesture profiles (biological and

trapezoidal), specifying the significance levels for each comparison. Box plots were

generated to illustrate the mean and standard deviation of user responses, offering

insights into the relative impact of motion profiles on perceived robot attributes.

The overall comparison of the means obtained from the two conditions in both the

warmth and discomfort is show in Figure 6 below. This figure provides a general
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(a) Comparison of wrist trajectory positions (x, y, z) between the trapezoidal and biological
motion profiles.

(b) Comparison of wrist trajectory velocities (x, y, z) between the trapezoidal and biolog-
ical motion profiles.

Fig. 4: Analysis of wrist trajectory positions and velocities in the (x, y, z) coordinates
during gesture execution for biological and trapezoidal motion profiles. (a) Wrist trajectory
positions for biological and trapezoidal motion profiles, (b) Wrist trajectory velocities for
biological and trapezoidal motion profiles
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(a) Mean and standard deviation of wrist trajectory positions (x, y, z)) across ten runs
for the biological motion profile.

(b) Mean and standard deviation of wrist trajectory velocities (x, y, z) across ten runs
for both trapezoidal and biological motion profile.

Fig. 5: Analysis of wrist trajectory positions and velocities across multiple repetitions in
the (x, y, z) coordinates during gesture execution for biological and trapezoidal motion
profiles. (a) Mean and standard deviation of trajectory positions across ten runs, and (b)
Mean and standard deviation of trajectory velocities across ten runs.
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Fig. 6: Mean of Responses in the Warmth and Discomfort Dimensions of Condition

1 (non-biological control gesture) and Condition 2 (biological motion profile).

view of user preferences relative to the neutal pointa on the scale, highlighting dif-

ferences between the motion profiles. The biological motion profile (represented in

shades of green) demonstrates higher ratings above the midpoint for warmth and

lower ratings below the midpoint for discomfort compared to the trapezoidal motion

profile (represented in shades of red).

8.3.1. Warmth Dimension Analysis

The overall warmth dimension for the two experiments was analyzed based on four

aspects: naturalness, fluidity of motion, expressiveness of gestures, and perceived

friendliness of the robot.

The results for the warmth dimension under the Trapezoidal velocity profile

revealed a mean score of 4.14 (SDb = 0.86, SEc = 0.21). The analysis showed no

statistically significant difference from the midpoint (t(16) = 0.664, p = 0.516), with

a mean difference of 0.14 and a 95% confidence interval ranging from −0.30 to 0.58.

These findings suggest that the Trapezoidal profile elicited a moderate perception

of warmth, but the result was not significantly higher than the neutral point. In

contrast, the Biological motion profile achieved a higher mean score of 5.38 (SD =

0.83, SE = 0.20). The difference from the midpoint was statistically significant

(t(16) = 6.89, p < 0.001), with a mean difference of 1.38 and a 95% confidence

interval ranging from 0.96 to 1.80. These findings indicate that participants rated

aThe neutral point is 4.0 on the scale.
bSD: standard deviation.
cSE: standard error.
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Fig. 7: Mean of Responses of Different Aspects in the Warmth Dimension of Condi-

tion 1 (non-biological control gesture) and Condition 2 (biological motion profile).

the Biological motion profile as significantly above the neutral point on the warmth

dimension.

The mean of the aspects of the warmth dimension under both conditions is shown

in Figure 7 below. This figure highlights how the biological motion profile (in shades

of green) consistently scored higher across all sub-dimensions than the trapezoidal

motion profile ( (in shades of red), indicating smoother and more human-like motion

execution.

Naturalness: For the Trapezoidal velocity profile, the Naturalness score was rel-

atively low, with a mean of 3.06 (SD = 1.16, SE = 0.28). The analysis revealed a

significant difference from the midpoint (t(16) = −3.35, p = 0.004), with a mean

difference of −0.94 and a 95% confidence interval of −1.54 to −0.35. These results

suggest that the Trapezoidal motion profile was perceived as significantly less nat-

ural than the neutral point. In comparison, the Biological motion profile scored

substantially higher, with a mean of 5.03 (SD = 1.33, SE = 0.32). The analy-

sis showed a significant difference from the midpoint (t(16) = 3.20, p = 0.006),

with a mean difference of 1.03 and a 95% confidence interval of 0.35 to 1.71. These

findings indicate that the Biological motion profile was perceived as significantly

more natural than the neutral point. These results demonstrate that the Biological

motion profile aligns more closely with participants’ expectations of naturalness,

as indicated by its positive deviation from the neutral midpoint. This finding re-
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inforces the idea that biologically inspired motion enhances the perceived realism

and smoothness of robot gestures.

Fluidity of Motion: The Trapezoidal motion profile resulted in a mean score

of 3.51 (SD = 1.18, SE = 0.29). The analysis showed no statistically significant

difference from the midpoint (t(16) = −1.69, p = 0.11), with a mean difference of

−0.49 and a 95% confidence interval spanning from −1.09 to 0.12. These findings

suggest that the Trapezoidal motion profile did not strongly convey fluidity. These

findings suggest that the Trapezoidal motion profile did not strongly convey fluidity

relative to a neutral perception. In contrast, the Biological motion profile achieved

a significantly higher mean score of 5.38 (SD = 1.04, SE = 0.25). The analysis

revealed a significant difference from the midpoint (t(16) = 5.51, p < 0.001), with a

mean difference of 1.38 and a 95% confidence interval of 0.85 to 1.91. These results

indicate that the Biological motion profile effectively conveyed a sense of fluidity,

exceeding the neutral point by a meaningful margin. The Biological motion profile

was rated significantly higher in fluidity compared to the Trapezoidal profile. This

result underscores the importance of fluid motion in achieving natural and smooth

gestures.

Expressiveness of Gestures: The Trapezoidal velovity profile scored a mean of

5.27 (SD = 0.77, SE = 0.19). The analysis revealed a significant deviation from

the midpoint (t(16) = 6.86, p < 0.001), with a mean difference of 1.27 and a 95%

confidence interval of 0.88 to 1.67. These findings indicate that the Trapezoidal

motion profile conveyed a high level of expressiveness relative to a neutral percep-

tion. Similarly, the Biological motion profile achieved an even higher mean score

of 5.61 (SD = 0.81, SE = 0.20). The analysis showed a significant difference from

the midpoint (t(16) = 8.19, p < 0.001), with a mean difference of 1.61 and a 95%

confidence interval of 1.19 to 2.02. This demonstrates that the Biological profile

was also highly expressive, significantly exceeding the neutral point. Both motion

profiles were rated as highly expressive when compared to the neutral midpoint.

These findings suggest that both profiles are effective in conveying expressiveness

in robot gestures, with the Biological motion profile showing a slightly higher per-

ceived expressiveness. This result suggests that which may imply that incorporating

biological motion profiles may not essentially influence the magnitude of expressive-

ness shown by the robot while executing the gestures.

Perceived Friendliness of Robot: For the Trapezoidal motion profile, the mean

score for Perceived Friendliness was 4.12 (SD = 0.79, SE = 0.19). The analysis

revealed no significant difference from the midpoint (t(16) = 0.643, p = 0.529),

with a mean difference of 0.12 and a 95% confidence interval of −0.29 to 0.53. These

results indicate a neutral perception of friendliness for the Trapezoidal profile. The

Biological motion profile achieved a higher mean score of 5.48 (SD = 0.84, SE =

0.20). The analysis showed a significant difference from the midpoint (t(16) = 7.16,

p < 0.001), with a mean difference of 1.48 and a 95% confidence interval of 1.04
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to 1.91. These results suggest that the Biological profile significantly enhanced the

perception of friendliness compared to the neutral midpoint. Both profiles were

evaluated relative to the midpoint, with the Trapezoidal profile eliciting a neutral

response and the Biological motion profile showing a significant positive perception

of friendliness.

Paired t-test: In order to understand the actual difference between the warmth

dimensions in the two conditions, a paired t−test was conducted between the overall

warmth dimension for the linear and biological motion profiles. The results below

showed a statistically significant difference (t = −4.17, p = 0.001), indicating that

the biological motion profile was perceived as significantly warmer than the linear

velocity profile.

These results provide insights into how participants perceived the robot’s ges-

tures in terms of warmth, highlighting the effectiveness of the biological motion

profile in conveying warmth in human-robot interaction scenarios. The findings

that the mean values for the fluidity of motion, naturalness of movement, and per-

ceived friendliness were significantly higher when biological motion was incorporated

into the robot’s movements have important implications. These results suggest that

leveraging biological motion principles can enhance positive user experiences during

human-robot interactions. Higher ratings of fluidity and naturalness indicate that

biological motion helped the robot’s movements appear more aligned with human

motion patterns. This increased sense of familiarity and biomimicry can reduce

the perception of robots as mechanical, unfamiliar entities, potentially mitigating

feelings of discomfort during interactions.

The higher ratings of perceived friendliness associated with biological motion

have significant implications for building positive relationships between humans and

social robots. Friendly and approachable demeanours can encourage users to feel

more comfortable, engaged, and willing to interact with social robots, potentially

increasing acceptance and adoption rates in various application domains.

8.3.2. Discomfort Dimension Analysis

The overall discomfort dimension for the two Condition was analyzed following

three key attributes:perceived unnaturalness, awkwardness and unease, and perceived

uncertainty. This dimension is reverse-scored, thus a smaller value for discomfort is

interpreted as a better interaction experience. Thus, Condition 2 had better results

with lesser discomfort values than Condition 1.

The Discomfort score for the Trapezoidal motion profile was moderate, with a

mean of 3.64 (SD = 0.99, SE = 0.24). The analysis showed no significant deviation

from the midpoint (t(16) = −1.49, p = 0.156), with a mean difference of −0.36

and a 95% confidence interval spanning from −0.87 to 0.15. This indicates that the

Trapezoidal profile did not strongly evoke discomfort but was not significantly lower

than the midpoint. The Biological motion profile yielded a significantly lower dis-
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Fig. 8: Mean of Responses of Different Aspects in the Discomfort Dimension of both

Conditions

comfort score, with a mean of 2.59 (SD = 0.86, SE = 0.21). The analysis revealed

a significant difference from the midpoint (t(16) = −6.80, p < 0.001), with a mean

difference of −1.41 and a 95% confidence interval ranging from −1.85 to −0.97.

These results demonstrate that the Biological profile effectively minimized discom-

fort, falling well below the neutral point. This suggests that biologically inspired

gestures contribute to a more positive and less unsettling interaction.

The mean of the aspects of the discomfort dimension under both conditions is

shown in Figure 8 below. This figure reveals lower ratings of discomfort in biological

motion (in shades of green) when compared with the trapezoidal motion profile (in

shades of red), demonstrating its ability to evoke a more positive perception of the

robot’s behaviour.

Perceived Unnaturalness: Participants rated the unnaturalness of the gestures

lower when performed with the biological motion profile (Condition 2) compared

to the linear velocity profile. For the Trapezoidal motion profile, the mean score for

Perceived Unnaturalness was 4.94 (SD = 1.16, SE = 0.28). The analysis showed a

significant deviation from the midpoint (t(16) = 3.35, p = 0.004), with a mean dif-

ference of 0.94 and a 95% confidence interval of 0.35 to 1.54. These results indicate

that the Trapezoidal profile was perceived as unnatural. In contrast, the Biologi-

cal motion profile achieved a lower mean score of 2.97 (SD = 1.33, SE = 0.32).

The analysis revealed a significant difference from the midpoint (t(16) = −3.20,
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p = 0.006), with a mean difference of −1.03 and a 95% confidence interval of −1.71

to −0.35. This suggests that the Biological profile was perceived as more natural

compared to the neutral midpoint. Both profiles were analyzed relative to the mid-

point of the scale. The Trapezoidal profile was rated as significantly unnatural, while

the Biological motion profile was rated as significantly more natural. These results

suggest that biologically inspired motion may reduce the perception of unnatural-

ness in robot movements, as evidenced by the ratings relative to the neutral point.

Thus, incorporating a biological motion profile introduces some level of naturalness

to the robot’s movements.

Awkwardness and Unease: The biological motion profile was perceived as less

awkward and causing less unease than the linear velocity profile. The Trapezoidal

motion profile resulted in a mean score of 5.53 (SD = 1.42, SE = 0.35). The anal-

ysis revealed a significant difference from the midpoint (t(16) = −4.26, p = 0.001),

with a mean difference of −1.47 and a 95% confidence interval of −2.20 to −0.74.

These results indicate that the Trapezoidal profile evoked significant discomfort.

The Biological motion profile achieved a substantially lower mean score of 2.31

(SD = 1.15, SE = 0.28). The analysis showed a significant difference from the

midpoint (t(16) = −6.07, p < 0.001), with a mean difference of −1.69 and a 95%

confidence interval of −2.28 to −1.10. These findings suggest that the Biological

profile minimized awkwardness and unease effectively. Both motion profiles demon-

strated significant deviations from the neutral midpoint, This could be due to the

appealing physical form of the Pepper humanoid robot.51 These results highlight

the potential of biologically inspired motion to enhance the perceived smoothness

and comfort of robot gestures.

Perceived Uncertainty: Participants rated the gestures as less uncertain or hes-

itant when performed with the biological motion profile. The Trapezoidal motion

profile resulted in a mean score of 3.46 (SD = 1.05, SE = 0.25). The analysis showed

a significant difference from the midpoint (t(16) = −2.14, p = 0.049), with a mean

difference of −0.54 and a 95% confidence interval of −1.08 to −0.004. These find-

ings suggest a moderate level of perceived uncertainty with the Trapezoidal profile.

The Biological motion profile yielded a much lower mean score of 2.49 (SD = 0.83,

SE = 0.20). The analysis showed a highly significant difference from the midpoint

(t(16) = −7.56, p < 0.001), with a mean difference of −1.51 and a 95% confidence

interval of −1.94 to −1.09. These results indicate that the Biological profile effec-

tively minimized uncertainty. These results highlight the potential of biologically

inspired motion to reduce perceptions of uncertainty in robot gestures, suggesting

a smoother and more confident movement style when using the Biological motion

profile.

Paired t-test: In order to understand the actual difference between the discomfort



January 22, 2025 16:58 WSPC/INSTRUCTION FILE
Akinade˙Barros˙Vernon˙IJHR

Biological Motion Aids Gestural Communication by Humanoid Social Robots 27

dimensions in the two conditions, a paired t − test was conducted between the

overall discomfort dimension for the linear and biological motion profiles. The results

showed a statistically significant difference (t = 3.972, p = 0.001), indicating that

the linear velocity profile was perceived as significantly causing more discomfort

than the biological motion profile.

The lower ratings of perceived unnaturalness of movement associated with bi-

ological motion indicate that users found the robot’s motions to be more lifelike,

biomimetic, and aligned with human kinematic profiles. This decrease in unnat-

uralness can contribute to a heightened sense of familiarity and social presence,

facilitating more seamless and engaging interactions. When users perceive a robot’s

movements as natural and intuitive, they may be more likely to view the robot as

a relatable social entity, fostering stronger anthropomorphic perceptions and emo-

tional connections.

The lower ratings of perceived uncertainty associated with biological motion are

also noteworthy. Uncertainty in robotic systems can stem from unpredictable or

unfamiliar behaviours, which can hinder trust, understanding, and effective com-

munication. By incorporating biological motion cues, which are deeply ingrained

in the human perceptual system,52 users may have found the robot’s actions and

intentions more predictable and interpretable, reducing feelings of uncertainty and

ambiguity during interactions.

Collectively, these results suggest that adopting biologically inspired motion in

social robots can contribute to more natural and potentially more comfortable user

experiences. Trajectory analysis of the robot’s arm movements, along with joint

state measurements, demonstrates that the biological motion profile more closely

aligns with human-like kinematic patterns. Such alignment may improve the pre-

dictability and familiarity of the robot’s gestures, subtly enhancing the robot’s

approachability and the user’s perception of its social qualities.53 However, these

benefits were observed only in specific aspects, as not all dimensions of user per-

ception showed statistically significant differences between motion profiles. This

suggests that while biologically inspired motions offer promising enhancements to

robotic behavior, further investigation is needed to understand their impact across

diverse social attributes and interaction contexts.

9. Summary and Conclusion

This study explored the integration of biologically inspired motion in gestural

communication for social robots, with the objective of enhancing the naturalness,

expressiveness, and overall quality of human-robot interactions. The motivation

stemmed from the growing need for robots to interact with humans in ways that

are intuitive, engaging, and aligned with human expectations. By embedding bio-

logical motion principles—specifically, the minimum jerk model—into the gestures

of a Pepper humanoid robot, this research aimed to improve perceptions of warmth

and reduce discomfort during interactions.
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The experimental methodology involved implementing a deictic gesture using

two distinct motion profiles: a trapezoidal velocity profile and a biologically in-

spired motion profile. These gestures were executed with the same time duration

across both profiles, ensuring comparability while revealing the smoother transi-

tions characteristic of the biologically inspired motion. The user evaluation involved

a structured survey based on the Robotic Social Attributes Scale (RoSAS), where

participants rated the robot’s gestures on dimensions of warmth and discomfort.

Quantitative trajectory and joint-state analyses were also performed, using mo-

tion capture with an Intel RealSense camera and ArUco markers, to validate the

accuracy and consistency of the robot’s motions.

The results demonstrated that gestures executed with the biologically inspired

profile were perceived as more natural and fluid, contributing to higher warmth rat-

ings and reduced discomfort in specific dimensions compared to the trapezoidal pro-

file. Statistical analyses revealed significant differences in perceptions for some at-

tributes, while others remained comparable. Motion analysis further confirmed that

the biological profile aligns more closely with human kinematics, showing smoother

trajectories and fewer abrupt transitions, which are likely to contribute to positive

social perceptions.

With a view to widening the breadth of the study described in this paper, we plan

on running more in-person studies with a copresent robot, and we are also exploring

the possibility of conducting studies online using videos, i.e., using a telepresent

robot. Li54 has shown that users perceive copresent robots more positively than

telepresent robots, while Donnermann et al.55 found that there are no significant

differences between video presentations and physically present robots in user studies

of robots acting as tutors. Both approaches have advantages and limitations, e.g.,

the greater reach of online studies vs. the immediacy of in-person studies. Since we

are primarily concerned here with the perception of gestures where the robot hands

move in three dimensions, and not just in the efficacy of the interaction, it may be

the case that in-person studies with a copresent robot are better suited than 2D

videos of a telepresent robot. It would be important to conduct a baseline evaluation

of identical studies using both formats before drawing any strong conclusions on

their relative merits and committing to a largescale online study.

In conclusion, this study underscores the potential of biological motion to im-

prove certain aspects of social robot interactions, such as naturalness, fluidity, and

perceived warmth. While the findings are promising, further research is needed to

explore the broader applicability of these motion models across diverse robot plat-

forms, gesture types, and interaction scenarios.
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