Robotics in Africa Forum at IROS 2024

Biological Motion for Gestural Communication in Social Robots

Adedayo Akinade & David Vernon

Carnegie Mellon University Africa

www.africa.engineering.cmu.edu

ROS 2024 1 To the second secon

Humans are sensitive to biological motion during social interactions and tend to prefer these motion profiles (Puce and Perret, 2003)

Minimum Jerk Model of Biological Motion

(Chan et al., 2021)

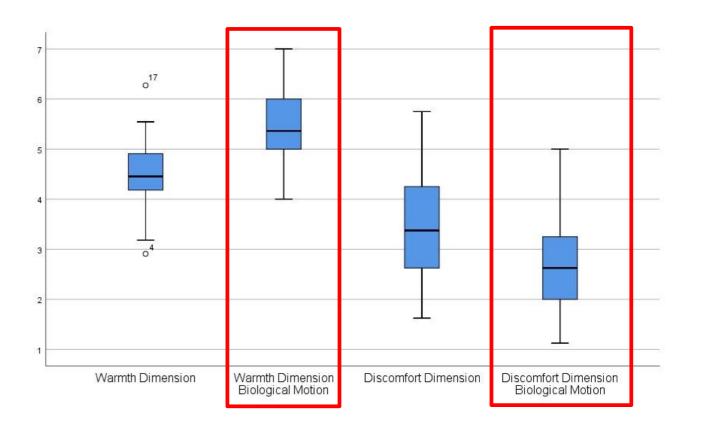
$$CF = \frac{1}{2} \int_{t_1}^{t_2} \left[\left(\frac{d^3 x}{dt^3} \right)^2 + \left(\frac{d^3 y}{dt^3} \right)^2 \right] dt$$

Cost function being minimized

Joint position
$$\theta(t) = p_s + k \left[10(t/d)^3 - 15(t/d)^4 + 6(t/d)^5 \right]$$

Joint velocity
$$\dot{\theta}(t) = \frac{k}{d} \left[30(t/d)^2 - 60(t/d)^3 + 30(t/d)^4 \right]$$

Joint acceleration
$$\ddot{\theta}(t) = \frac{k}{d^2} \left[60(t/d) - 180(t/d)^2 + 120(t/d)^3 \right]$$


$$0 \le t \le d$$

Biological motion during human-robot interaction

Warmth increased on average by 14%

Discomfort reduced by 13%

References

- A. Akinade, Y. Haile, N. Mutangana, C. Tucker, and D. Vernon, "Culturally Competent Social Robots Target Inclusion in Africa", Science Robotics, 2023.
- C. Carpinella, A. Wyman, M. Perez, and S. Stroessner, "The Robotic Social Attributes Scale (RoSAS): Development and Validation", in 12th ACM/IEEE International Conference on Human-Robot Interaction, 2017, pp. 254 262.
- W. Chan, T. Tran, S. Sheikholeslami, and E. Croft, "An experimental validation and comparison of reaching motion models for unconstrained handovers: towards generating humanlike motions for human-robot handovers", in Proceedings of the 20th IEEE-RAS International Conference on Humanoid Robots, 2020, pp. 356-361.
- Puce and D. Perrett, "Electrophysiology and brain imaging of biological motion", in Philosophical Transactions of the Royal Society B: Biological Sciences, 2003, 358(1431), pp. 435 445.