
Culturally Sensitive Social Robotics
for Africa

6.1 Use Case Implementation

Due date: 31/03/2025
Submission Date: 18/04/2025

Revision Date: N/A

Start date of project: 01/07/2023 Duration: 36 months

Lead organisation for this deliverable: Carnegie Mellon University Africa (for Wits)

Responsible Person: D. Vernon Revision: 1.0

Project funded by the African Engineering and Technology Network (Afretec)
Inclusive Digital Transformation Research Grant Programme

Dissemination Level
PU Public PU
PP Restricted to other programme participants (including Afretec Administration)
RE Restricted to a group specified by the consortium (including Afretec Administration)
CO Confidential, only for members of the consortium (including Afretec Administration)

6.1 Use Case Implementation

Executive Summary

Deliverable D6.1 documents the outcome of Task 6.1, i.e., the implementation of the
two use cases defined in Work Package WP2, using the outcomes of WP1 - WP5, i.e.,
the cultural knowledge, the scenario specification, and the integrated robot’s sensory
and interaction capabilities. Specifically, the use cases are captured using the robot mis-
sion specification methodology documented in Deliverable D5.4.2 Robot Mission Lan-
guage, i.e., using behavior trees [1, 2]. The resultant behavior tree provides the input
to the behaviorController ROS node documented in Deliverable D5.4.3. Running the
cssr system ROS package against the behavior tree robot mission specification provides
a demonstration of the complete working system for the corresponding use case.

In the CSSR4Africa work plan, this deliverable is assigned to the University of the
Witswatersrand. However, the material in this report was developed and written by
Carnegie Mellon University Africa. This was necessary because, due to extensive delays
in the delivery of the Pepper robot to the University of the Witswatersrand, little or no
progress had been made on three key inputs for Task 6.1 and Deliverable D6.1, viz. Deliv-
erables D5.4.1 Cultural Knowledge Ontology & Culture Knowledge Base, D5.4.2 Robot
Mission Language, and D5.4.3 Robot Mission Interpreter, all of which were assigned to
the University of the Witswatersrand. Consequently, Carnegie Mellon University Africa
took joint responsibility for these four deliverables (among others, specificially D5.5.2.1,
D5.5.4, D6.2). Since this involved a significant amout of additional, unplanned effort,
only one use case, the laboratory tour, has been implemented to date, leaving the second
use case, the receptionist, to be implemented later.

Date: N/A
Version: No 1.0

Page 2

6.1 Use Case Implementation

Contents

1 Introduction 4

2 Behaviour Tree Implementation of Use Case Scenario 1: Laboratory
Tour 4
2.1 XML Output . 4
2.2 File Root . 4
2.3 Subtrees . 5

2.3.1 TourGuide Subtree . 5
2.3.2 I. DetectVisitor Subtree . 6
2.3.3 II. EngageVisitor Subtree . 7
2.3.4 III. QueryVisitorResponse Subtree 8
2.3.5 IV. VisitExhibit Subtree . 9
2.3.6 V. EndTour Subtree . 10
2.3.7 NavigateToLocation Subtree . 11
2.3.8 GoHome Subtree . 12

2.4 Mission Nodes . 12
2.5 Behavior Tree Diagram . 15

References 16

Principal Contributors 17

Document History 18

Date: N/A
Version: No 1.0

Page 3

6.1 Use Case Implementation

1 Introduction

This deliverable provides a detailed walkthrough of the behaviour tree implementation
the Lab Tour robot mission specification, as defined by the D2.1 Use Case Scenario. Sec-
tion 2.1 introduces the generated XML output, which is the representation of robot mis-
sion specification behavior tree, by describing the organization of the XML file. Section
2.3 discusses the incorporation and structuring of subtrees, which modularize complex
behaviors and enable reusability within the mission specification. Additionally, Section
2.4 explains mission nodes, which represent specific tasks or actions executed by the
robot. Lastly, a visual representation is provided through the behavior tree diagram in
Fig.1). Fig.1 is

illegible.
I suggest you
break it up
into nine
diagrams, the
first with the
root,
sequence, and
seven
level-three
nodes, the
remaining six
figures with
the five
subtrees for
the five
phases, and
the subtree
that contains
the
MaybeAnoth-
erTimeSpeech
node. It is not
clear why this
latter subtree
isn’t accorded
a distinct
phase and a
shaded
background.
Neither is it
clear why
there is a
sequence node
outside the V
EndTour
subtree. It
only has one
exit arrow:
how can it be
a sequence?
The remaining
two figures
should show
the
NavigateToLocation

and GoHome
subtrees.

2 Behaviour Tree Implementation of Use Case Scenario 1:
Laboratory Tour

This section details the implementation of a robot mission specification based on the
operational guidelines provided in the “Lab Tour” scenario (see Deliverable D2.1 User
Scenario Specification). The mission is structured as a behavior tree, which serves as the
control architecture for coordinating the robot’s actions. To design and visualize this
behavior tree, we employ the Groot2 IDE, using its intuitive drag and drop mechanisms
as outline above. The mission interpreter, implemented using the BehaviorTree.CPP
library (described in Deliverable D5.4.3 Robot Mission Interpreter), executes the behav-
ior tree within a ROS-based framework, forming an integral part of the CSSR4Africa
software system. For an overview of the system architecture, please refer to D3.1 System
Architecture.

2.1 XML Output

As explained above, the mission is designed using the Groot2 IDE. The Groot2 IDE
allows for the design of behavior trees using a graphical interface. The mission specifi-
cation represented as a behavior tree is then exported as an XML file, which is used by
the mission interpreter to execute the mission. The XML representation of the behavior
tree designed for the “Lab Tour” scenario is explained in the following sections. For the
graphical representation of the behavior tree, refer to Figure 1.

The robot mission specification file is has three sections, the file root, the subtree
specifications, and the mission nodes. These are described in the following sections.

2.2 File Root

The root element of the XML file is defined as:
<?xml version ="1.0" encoding ="UTF -8"?>
<root BTCPP_format ="4" main_tree_to_execute =" TourGuide ">
<!-- -->
</ root>

Date: N/A
Version: No 1.0

Page 4

6.1 Use Case Implementation

The attribute BTCPP format="4" specifies that this behavior tree is built for version 4 of
the BehaviorTree.CPP library. This is important because the robot mission interpreter
must be implemented with the correct version, in this case, version 4, for the behavior
tree specification to be executed correctly. It is worth noting that the Groot2 IDE
supports both version 3 and version 4 of the library, configurable within the settings,
so this attribute helps ensure compatibility between the designed behavior tree and
the mission interpreter. The attribute main tree to execute="TourGuide" designates
TourGuide as the primary behavior tree to be executed, indicating which tree within
the file serves as the entry point for the mission.

2.3 Subtrees

To facilitate an efficient mission design process and enhance readability and clarity, the
overall mission was structured into several distinct subtrees, each representing a logical
segment of the overall task defined in the use case scenario. This enabled easier devel-
opment and debugging and allows for future modifications. By organizing the behavior
tree into modular, clearly defined subtrees, the complexity of mission specifications is
significantly reduced. Then, by connecting these modular subtrees in a well-defined logi-
cal sequence, the final behavior tree is constructed, which serves as the complete mission
specification for the use case scenario as defined in Deliverable D2.1 Use Case Scenario.

2.3.1 TourGuide Subtree
The TourGuide subtree is the main behavior tree that orchestrates the robot’s actions
during the tour. It is divided into five segments, each representing a distinct phase of the
tour experience. The segments are executed sequentially, with the robot transitioning
from one segment to the next based on the outcome of the previous segment. The
segments are defined as follows.

< BehaviorTree ID=" TourGuide ">
< Sequence >

< SubTree ID="I. DetectVisitor "/>
< SubTree ID="II. EngageVisitor "/>
< SubTree ID="III. QueryVisitorResponse "/>
< Fallback >

< Sequence >
< Inverter >

< IsVisitorResponseYes />
</ Inverter >
< MaybeAnotherTimeSpeech />

</ Sequence >
< Sequence >

< SubTree ID="IV. VisitLandmark "/>
< SubTree ID="V. EndTour "/>

</ Sequence >
</ Fallback >

</ Sequence >
</ BehaviorTree >

Date: N/A
Version: No 1.0

Page 5

6.1 Use Case Implementation

2.3.2 I. DetectVisitor Subtree
I do not like
the use of
Roman
ordinal
numbers in
the behaviour
tree
identifiers,
e.g., I.
DetectVisitor.
I suggest we
remove them.
I realize they
are intended
to indicate the
phase of the
tour but it
seems to me
they are
unnecessary.

The DetectVisitor subtree is dedicated to identifying when a visitor is present. It utilizes
various sensors available to the robot to continuously monitor its surroundings. The
robot is animated to appear lively, actively scanning its environment to reliably localize
and track a visitor before initiating an interaction.

< BehaviorTree ID="I. DetectVisitor ">
< Sequence >

< Parallel failure_count ="2" success_count ="2">
< Fallback >

< EnableAnimateBehavior />
< HandleFallBack />

</ Fallback >
< Fallback >

< ScanningOvertAttentionMode />
< HandleFallBack />

</ Fallback >
</ Parallel >
< IsVisitorDiscovered />

</ Sequence >
</ BehaviorTree >

Date: N/A
Version: No 1.0

Page 6

6.1 Use Case Implementation

2.3.3 II. EngageVisitor Subtree
Ibid.

Once a visitor is detected, the robot transitions to actively engaging them. In this phase,
the robot makes a welcoming gesture, greets the visitor verbally, and introduces itself
as the tour guide. The engagement involves adjusting its body language to establish a
friendly and approachable interaction.

< BehaviorTree ID="II. EngageVisitor ">
< Sequence >

< Fallback >
< Sequence >

< DisableAnimateBehavior />
< WelcomeGesture />
< EnableAnimateBehavior />

</ Sequence >
< HandleFallBack />

</ Fallback >
< Fallback >

< WelcomeSpeech />
< HandleFallBack />

</ Fallback >
< Fallback >

< SeekOvertAttentionMode />
< HandleFallBack />

</ Fallback >
< IsMutualGazeDiscovered />
< Fallback >

< SocialOvertAttentionMode />
< HandleFallBack />

</ Fallback >
< Fallback >

< QueryTourSpeech />
< HandleFallBack />

</ Fallback >
</ Sequence >

</ BehaviorTree >

Date: N/A
Version: No 1.0

Page 7

6.1 Use Case Implementation

2.3.4 III. QueryVisitorResponse Subtree
Ibid.

After the initial greeting, the robot seeks confirmation from the visitor about whether
they would like to take the tour. This segment handles both speech-based and tablet-
based responses. The robot asks a clear question, listens for a “Yes” or “No” response
(using either automatic speech recognition or a visual touch interface), and prompts
repeatedly if the response is unclear. If the response is positive, the robot proceeds to
the next segment. Otherwise, it provides a polite response and ends the interaction.

< BehaviorTree ID="III. QueryVisitorResponse ">
< Fallback >

< Sequence >
< IsASREnabled />
< RetryUntilSuccessful num_attempts ="3">

< Sequence >
< Fallback >

< SayYesNoSpeech />
< HandleFallBack />

</ Fallback >
< IsYesNoUttered />

</ Sequence >
</ RetryUntilSuccessful >

</ Sequence >
< Fallback >

< IsASREnabled />
< RetryUntilSuccessful num_attempts ="3">

< Sequence >
< Fallback >

< PressYesNoSpeech />
< HandleFallBack />

</ Fallback >
< Fallback >

< PressYesNoDialogue />
< HandleFallBack />

</ Fallback >
</ Sequence >

</ RetryUntilSuccessful >
</ Fallback >

</ Fallback >
</ BehaviorTree >

Date: N/A
Version: No 1.0

Page 8

6.1 Use Case Implementation

2.3.5 IV. VisitExhibit Subtree
Ibid.

With a positive response, the tour moves into the exhibit visit segment. Here, the robot
guides the visitor from one exhibit to another. For each exhibit, the robot retrieves
and announces information about the exhibit from a knowledge base, navigates to the
location, checks for visual contact to verify continuation, uses gestures such as pointing
to highlight key aspects of the exhibit, and provides descriptive commentary about what
is being shown. This segment is designed to be repeatable for each exhibit along the
tour route.

< BehaviorTree ID="IV. VisitExhibit ">
< Sequence >

< Fallback >
< RetrieveListOfExhibits />
< HandleFallBack />

</ Fallback >
< Inverter >

< KeepRunningUntilFailure >
< Sequence >

< IsListWithExhibit />
< Sequence >

< Fallback >
< SelectExhibit />
< HandleFallBack />

</ Fallback >
< Fallback >

< FollowMeSpeech />
< HandleFallBack />

</ Fallback >
< SubTree ID=" _NavigateToLocation " />
< Fallback >

< DescribeExhibitSpeech_1 />
< HandleFallBack />

</ Fallback >
< Fallback >

< PerformDeicticGesture name="Point to Exhibit " />
< HandleFallBack />

</ Fallback >
< Fallback >

< DescribeExhibitSpeech_2 />
< HandleFallBack />

</ Fallback >
</ Sequence >

</ Sequence >
</ KeepRunningUntilFailure >

</ Inverter >
</ Sequence >

</ BehaviorTree >

Date: N/A
Version: No 1.0

Page 9

6.1 Use Case Implementation

2.3.6 V. EndTour Subtree
Ibid.

The final segment concludes the tour experience. Once all exhibits have been visited,
the robot escorts the visitor back to the entrance. It communicates that the tour has
ended, expresses gratitude and hope that the visitor enjoyed the tour, and finally says
goodbye while performing a farewell gesture. This segment ensures a polite and complete
wrap-up of the interaction.

< BehaviorTree ID="V. EndTour ">
< Sequence >

< Fallback >
< EndTourSpeech />
< HandleFallBack />

</ Fallback >
< Fallback >

< LookUpEntrance />
< HandleFallBack />

</ Fallback >
< SubTree ID=" _NavigateToLocation " />
< Fallback >

< HereIsTheDoorSpeech />
< HandleFallBack />

</ Fallback >
< Fallback >

< PerformDeicticGesture name="Point to Exit" />
< HandleFallBack />

</ Fallback >
< Parallel failure_count ="1" success_count ="2">

< Fallback >
< GoodbyeGesture />
< HandleFallBack />

</ Fallback >
< Fallback >

< SayGoodBye />
< HandleFallBack />

</ Fallback >
</ Parallel >
< SubTree ID=" _GoHome " />

</ Sequence >
</ BehaviorTree >

Date: N/A
Version: No 1.0

Page 10

6.1 Use Case Implementation

Two additional subtrees, NavigateToLocation and GoHome, are defined to lever- Repeatedly?
NavigateToLocation

appears twice
but GoHome
only appears
once in the
overall
behavior tree.
I guess it
could appear
more often in
the case of
failure
handling.

age modularity and reusability, fundamental benefits inherent in the behavior tree ap-
proach. Unlike the previously discussed subtrees, which primarily served to segment
the mission into clear, readable chunks, these subtrees encapsulate behaviors that occur
repeatedly throughout the mission. Abstracting these common behaviors into sepa-
rate subtrees significantly reduced redundancy, enhances maintainability, and ensures
consistency across the overall behavior tree structure. As a direct result, the mission
specification becomes easier to design and maintain. This modular design is a case in
point of one of the main strengths of behavior trees, which is enabling efficient reuse of
behavior definitions within complex robotic missions.

2.3.7 NavigateToLocation Subtree
Neither do I
like the use of
the leading
underscores in
the behaviour
tree
identifiers.
What do they
signify?
Unless there is
a good reason
for using
them, I
suggest we
remove them.

The main mission node in this subtree is the Navigate action node. This node is the
one that’s directly responsible for navigating the robot to a specified location. The
robot uses its localization and mapping capabilities to plan a path to the target location
and execute the navigation. But, before the robot navigates to a location, it must first
disable overt attention mode and the animate behavior subsystem (if it has been
enabled). This is necessary since the robot doesn’t need to set its gaze anywhere but
right in front of it or perform any gestures while navigating. The robot must focus on
the navigation task and ensure it reaches the target location successfully. Once it has
reached its destination, the robot must re-enable the overt attention mode to resume its
interaction with the visitor. This set of behaviors that accompany the navigation task
in almost every instance, have been encapsulated in the NavigateToLocation subtree.

< BehaviorTree ID=" _NavigateToLocation ">
< Sequence >

< Fallback >
< DisabledOvertAttentionMode />
< HandleFallBack />

</ Fallback >
< Fallback >

< DisableAnimateBehavior />
< HandleFallBack />

</ Fallback >
< Fallback >

< Navigate />
< HandleFallBack />

</ Fallback >
< Fallback >

< SeekOvertAttentionMode />
< HandleFallBack />

</ Fallback >
< IsMutualGazeDiscovered />

</ Sequence >
</ BehaviorTree >

Date: N/A
Version: No 1.0

Page 11

6.1 Use Case Implementation

2.3.8 GoHome Subtree
Ibid.

Similar to NavigateToLocation, the GoHome subtree encapsulates behaviors that are
common everytime the robot needs to navigate to the Home location. The coordinates of
that location are predefined and stored in the Environment Knowledge Base. The robot
must first look up the home location, disable overt attention mode, and the animate
behavior subsystem. Only then does it navigate to the home location. Once it has
reached the home location, unlike the NavigateToLocation subtree, the robot doesn’t
need to re-enable the overt attention mode.

< BehaviorTree ID=" _GoHome ">
< Sequence >

< Fallback >
< LookUpHome />
< HandleFallBack />

</ Fallback >
< Fallback >

< DisabledOvertAttentionMode />
< HandleFallBack />

</ Fallback >
< Fallback >

< DisableAnimateBehavior />
< HandleFallBack />

</ Fallback >
< Fallback >

< Navigate />
< HandleFallBack />

</ Fallback >
</ Sequence >

</ BehaviorTree >

2.4 Mission Nodes

The leaf nodes, which include both action and condition nodes, are where the custom
functionality is implemented. Combined with control flow nodes, these building blocks
enable the definition of the desired behaviors. A total of 33 action and condition nodes
were defined for the “Lab Tour” scenario, with many of these nodes reused multiple times
throughout the behavior tree. These custom nodes are comprehensively listed in Table
1, which provides the name, type, and description of each node. Note that the actual
logic and implementation of these nodes are not detailed here; they are encapsulated
within the robot mission interpreter, which executes the behavior tree, as described in
Deliverable D5.4.3 Robot Mission Interpreter.

Date: N/A
Version: No 1.0

Page 12

6.1 Use Case Implementation

Table 1: High-Level Mission Node Descriptions

Node Type Description
DescribeExhibitSpeech 1 Action Delivers the first part of an auditory description

of the current exhibit to inform visitors about its
details.

DescribeExhibitSpeech 2 Action Delivers the second part of an auditory descrip-
tion of the current exhibit to inform visitors
about its details.

DisableAnimateBehavior Action Disables the robot’s animation behaviors
DisabledOvertAttentionMode Action Deactivates overt attention behaviors
EnableAnimateBehavior Action Activates the robot capability to have the ap-

pearance of an animate agent
EndTourSpeech Action Delivers the concluding remarks of the tour, sig-

naling the end of the visit.
FollowMeSpeech Action Instructs visitors to follow the robot, guiding

them to the next segment of the tour.
GoodbyeGesture Action Executes a farewell gesture, visually marking the

end of the interaction.
HandleFallBack Action Acts as a contingency mechanism to manage un-

expected failures during mission execution
HereIsTheDoorSpeech Action Informs visitors about the location of an exit or

transition point within the environment.
IsASREnabled Condition Evaluates whether the system’s speech recogni-

tion feature is active, influencing subsequent in-
teractive behaviors.

IsListWithExhibit Condition Determines if there are remaining exhibits to
visit

IsMutualGazeDiscovered Condition Assesses whether mutual gaze with a visitor is
established, a key element for engaging interac-
tions.

IsVisitorDiscovered Condition Detects the presence of a visitor
IsVisitorResponseYes Condition Checks for an affirmative response from the vis-

itor
IsYesNoUttered Condition Verifies whether a clear yes/no response has been

provided
LookUpEntrance Action Accesses the location data for the entrance
LookUpHome Action Fetches the coordinates of the “Home” location
MaybeAnotherTimeSpeech Action Communicates a polite postponement of the tour
Navigate Action Initiates navigation by directing the robot to-

ward a specified location within the environment.
PerformDeicticGesture Action Executes a pointing gesture to direct the visitor’s

attention to a specific exhibit or location.
PressYesNoDialogue Action Starts a binary (Yes/No) dialogue with the visi-

tor to capture their input

Date: N/A
Version: No 1.0

Page 13

6.1 Use Case Implementation

Node Type Description
PressYesNoSpeech Action Prompts the visitor verbally for a yes/no re-

sponse
QueryTourSpeech Action Invites the visitor to participate in the tour,

thereby initiating the interactive experience.
RetrieveListOfExhibits Action Gathers a list of exhibits to be visited, forming

the basis for sequencing of the tour.
SayGoodByeSpeech Action Delivers a farewell message to mark the end of

the tour
SayYesNoSpeech Action Clearly instructs the visitor to provide a yes/no

response, reinforcing the expected interaction
format.

ScanningOvertAttentionMode Action Switches the robot’s focus to a scanning mode,
enabling it to search for and assess visitor pres-
ence.

SelectExhibit Action Chooses the next exhibit for the tour
SocialOvertAttentionMode Action Engages a social attention mode that enhances

the robot’s interactive presence
START OF TREE Action Marks the beginning of the mission, serving

as a logical anchor for debugging and tracking
mission progression for the robot mission inter-
preter.

WelcomeGesture Action Executes a welcoming gesture
WelcomeSpeech Action Delivers an initial welcome message to engage

the visitor at the start of the tour.

Date: N/A
Version: No 1.0

Page 14

6.1 Use Case Implementation

2.5 Behavior Tree Diagram

I. DetectVisitor II. EngageVisitor III. QueryVisitorResponse IV. VisitLandmark

V. EndTour

ROOT

→
Sequence

START_OF_TREE
?

Fallback
→

Sequence
→

Sequence
?

Fallback
→

Sequence

→
Sequence

→
Sequence

Inverter MaybeAnotherTimeSpeech

IsVisitorResponseYes

→
Sequence

→
→

Parallel
(failure_count=2,
success_count=2)

IsVisitorDiscovered
?

Fallback
?

Fallback
?

Fallback
IsMutualGazeDiscovered

?
Fallback

?
Fallback

→
Sequence

?
Fallback

?
Fallback

Inverter

?
Fallback

?
Fallback

_NavigateToLocation
(SubTree)

?
Fallback

?
Fallback

→
→

Parallel
(failure_count=1,
success_count=2)

_GoHome
(SubTree)

?
Fallback

?
Fallback

EnableAnimateBehavior HandleFallBack ScanningOvertAttentionMode HandleFallBack

→
Sequence

HandleFallBack

DisableAnimateBehavior WelcomeGesture EnableAnimateBehavior

WelcomeSpeech HandleFallBack SeekOvertAttentionMode HandleFallBack SocialOvertAttentionMode HandleFallBack QueryTourSpeech HandleFallBack IsASREnabled
RetryUntilSuccessful
(num_attempts=3)

→
Sequence

?
Fallback

IsYesNoUttered

SayYesNoSpeech HandleFallBack

IsASREnabled
RetryUntilSuccessful
(num_attempts=3)

→
Sequence

?
Fallback

?
Fallback

PressYesNoSpeech HandleFallBack PressYesNoDialogue HandleFallBack

RetrieveListOfLandmarks HandleFallBack KeepRunningUntilFailure

→
Sequence

IsListWithLandmark
→

Sequence

?
Fallback

?
Fallback

_NavigateToLocation
(SubTree)

?
Fallback

?
Fallback

?
Fallback

SelectLandmark HandleFallBack FollowMeSpeech HandleFallBack DescribeExhibitSpeech_1 HandleFallBack
PerformDeicticGesture

(Point to Exhibit)
HandleFallBack DescribeExhibitSpeech_2 HandleFallBack

EndTourSpeech HandleFallBack LookUpEntrance HandleFallBack HereIsTheDoorSpeech HandleFallBack
PerformDeicticGesture

(Point to Exit)
HandleFallBack

?
Fallback

?
Fallback

GoodbyeGesture HandleFallBack SayGoodBye HandleFallBack

Figure 1: Behavior Tree Diagram of the Robot Mission Specification for the “Lab Tour” Scenario

Date: N/A
Version: No 1.0

Page 15

6.1 Use Case Implementation

References

[1] R. Ghzouli, T. Berger, E. B. Johnsen, A. Wasowski, and S. Dragul. Behavior trees and
state machines in robotics applications. IEEE Transactions on Software Engineering,
49(9):4243 – 4267, 2023.

[2] E. Dortmans and T. Punter. Behavior trees for smart robots practical guidelines for
robot software development. Journal of Robotics, 2022.

Date: N/A
Version: No 1.0

Page 16

6.1 Use Case Implementation

Principal Contributors

The main authors of this deliverable are as follows (in alphabetical order).

Tsegezeab Tefferi, Carnegie Mellon University Africa.
David Vernon, Carnegie Mellon University Africa.

Date: N/A
Version: No 1.0

Page 17

6.1 Use Case Implementation

Document History

Version 1.0
First version created by moving and reorganizing Section 3 from Deliverable D5.4.2.
David Vernon.
18 April 2025.

Date: N/A
Version: No 1.0

Page 18

	Introduction
	Behaviour Tree Implementation of Use Case Scenario 1: Laboratory Tour
	XML Output
	File Root
	Subtrees
	TourGuide Subtree
	 I. DetectVisitor Subtree
	 II. EngageVisitor Subtree
	III. QueryVisitorResponse Subtree
	IV. VisitExhibit Subtree
	V. EndTour Subtree
	_NavigateToLocation Subtree
	_GoHome Subtree

	Mission Nodes
	Behavior Tree Diagram

	References
	Principal Contributors
	Document History

