
Culturally Sensitive Social Robotics
for Africa

D5.5.4 Robot Navigation

Due date: 26/02/2025
Submission Date: 26/02/2025

Revision Date: n/a

Start date of project: 01/07/2023 Duration: 36 months

Lead organisation for this deliverable: Carnegie Mellon University Africa

Responsible Person: Birhanu Shimelis Girma Revision: 1.0

Project funded by the African Engineering and Technology Network (Afretec)
Inclusive Digital Transformation Research Grant Programme

Dissemination Level
PU Public PU
PP Restricted to other programme participants (including Afretec Administration)
RE Restricted to a group specified by the consortium (including Afretec Administration)
CO Confidential, only for members of the consortium (including Afretec Administration)

D5.5.4 Robot Navigation

Executive Summary
Deliverable D5.5.4 focuses on developing a software module for Robot Navigation, enabling the Pepper
robot to autonomously traverse its environment while considering both static and dynamic obstacles. This
module integrates path planning algorithms, including Breadth-First Search (BFS), Dijkstra, and A*. Nav-
igation is executed by identifying waypoints along the planned path and controlling the robot’s locomotion
from waypoint to waypoint.

A key feature of this module is the incorporation of culturally sensitive proxemics, derived from the
knowledge base created in Deliverable D1.2 Rwandan Cultural Knowledge. This functionality ensures that
the robot maintains appropriate social distances when navigating around humans, enhancing its adaptability
and acceptance in human-centered environments.

The deliverable outlines a software development process that includes requirements definition, module
specification, implementation, implementation, and unit testing. These phases are comprehensively docu-
mented, adhering to the methodologies established in Deliverable D3.2. The navigation module integrates
with the robot localization system developed in Deliverable D4.2.4, ensuring path execution within the
robot’s environment.

This integration is critical for navigation, as the robot continuously updates its pose with real-time
data from the robotLocalization node. The requirement definition specifies input parameters control data,
and output velocities, ensuring compatibility with the physical robot. All coding activities adhere to the
software engineering standards to produce maintainable and reliable code.

The deliverable concludes with unit testing. The test evaluates that the developed module meets its
objectives and delivers reliable navigation performance for the Pepper robot.

Date: 26/02/2025
Version: No 1.0

Page 2

D5.5.4 Robot Navigation

Contents
1 Introduction 4

2 Requirements Definition 5

3 Module Specification 6

4 Implementation 8
4.1 File Organization . 8
4.2 Configuration Parameters . 8

5 Executing Robot Navigation 11
5.1 Environment Setup . 11
5.2 Interacting with the Node . 12

6 Unit Test 13
6.1 File Organization and Its Purposes . 13
6.2 Test Environment Setup . 14
6.3 Test Cases . 14
6.4 Executing the Robot Navigation Unit Test . 14
6.5 Test Results . 15

Appendix I: Unit Test Logs 16

References 18

Principal Contributors 19

Document History 20

Date: 26/02/2025
Version: No 1.0

Page 3

D5.5.4 Robot Navigation

1 Introduction
This document describes the development and implementation of the robotNavigation ROS node, a com-
ponent enabling the Pepper robot to navigate in the environment while considering both static and dynamic
obstacles. This module is designed to compute optimal paths, avoid obstacles, and execute smooth loco-
motion towards the goals, ensuring safe and efficient navigation.

As part of Task 5.5.4, the robotNavigation module integrates fundamental path planning and localiza-
tion techniques, leveraging algorithms such as Breadth-First Search (BFS), Dijkstra’s Algorithm, and A*
for trajectory computation. A key feature of this module is its adherence to culturally sensitive proxemics
(social distance) , derived from the Rwandan Cultural Knowledge Base (as outlined in Deliverable D1.2
[1]). This ensures that the robot maintains appropriate social distances when interacting with humans, im-
proving its usability in real-world settings. The navigation system operates in physical environment.

This report provides a comprehensive overview of the robotNavigation node, covering module spec-
ifications, implementation details, interface design, executing the node and unit testing. The subsequent
sections will elaborate on the key functional components of the module, including path planning, and
waypoint-based locomotion ensuring clarity in system design and execution.

Date: 26/02/2025
Version: No 1.0

Page 4

D5.5.4 Robot Navigation

2 Requirements Definition
The robot navigation module provides the Pepper robot with the ability to navigate autonomously through
an environment containing static inanimate obstacles and dynamic obstacles such as humans [2]. This
deliverable ensures that the module meets user expectations, enabling the robot to compute the shortest
path to a target destination and safely move from waypoint to waypoint. The navigation system operates in
various scenarios of physical environment.

The module computes the shortest path from the robot’s current position to a specified target position
and orientation using Breadth First Search or Dijkstra’s algorithm or the A* algorithm. The computed path
should include waypoints, which are identified using either equidistant waypoint selection or high path
curvature waypoint selection techniques. These methods ensure smooth and efficient navigation along the
planned path while considering the robot’s physical capabilities and the complexity of the environment.

The module also requires obstacle avoidance mechanisms. It must augment a pre-defined metric
workspace map with additional obstacles, including human obstacles detected in the robot’s field of view.
The size and extent of these human obstacles must adhere to culturally sensitive proxemics, as defined in
Deliverable D1.2 African Modes of Social Interaction. This ensures that the robot respects personal space
and cultural norms during navigation.

The navigation module is designed to integrate with other systems. It acquires the robot’s current
pose from the robotLocalization node, and uses the workspace map generated in Deliverable D5.5.3. The
module then publishes the planned path and velocity commands to the /cmd_vel topic, enabling the
robot’s locomotion.

The module operates in two modes, normal mode and verbose mode. In normal mode, it executes
navigation without additional logging or visualization. In verbose mode, it logs data published to topics
and displays diagnostic information, such as the configuration space map and planned path, in an OpenCV
window. This dual-mode functionality allows for detailed debugging and analysis during development and
testing.

To initiate navigation, the module accepts a goal pose specified by the coordinates x, y and an orienta-
tion θ in the workspace frame of reference. Once the goal is received, the module calculates the required
path and outputs a sequence of forward and angular velocities, which are published to the /cmd_vel topic.
Additionally, the configuration space map and the planned path are rendered graphically for analysis.

Operationally, the module is compatible with both the physical Pepper robot and a simulated envi-
ronment using the Pepper simulator. It reads platform-specific parameters, such as sensor and actuator
topics, from a configuration file named robotNavigationConfiguration.ini. This ensures that
the module can be easily adapted to different platforms without altering its core logic.

From a non-functional perspective, the module is designed to compute the shortest path to ensure real-
time navigation. The robot must reach its target position within a predefined tolerance (±0.1m for position and±
5◦ for orientation). The module must also demonstrate a high success rate (e.g., ≥ 95%) in avoiding obsta-
cles during navigation. To ensure maintainability, the code adheres to the software engineering standards
outlined in Deliverable D3.2, and internal documentation clearly describes the module’s functionalities,
parameters, and interfaces.

In its intended use, the module must navigate static environments using a pre-defined workspace map.
The robot must also dynamically adjust its behavior when humans or other obstacles enter its path, ensuring
safe and efficient navigation.

Date: 26/02/2025
Version: No 1.0

Page 5

https://cssr4africa.github.io/deliverables/CSSR4Africa_Deliverable_D1.2.pdf
https://cssr4africa.github.io/deliverables/CSSR4Africa_Deliverable_D3.2.pdf

D5.5.4 Robot Navigation

3 Module Specification
The Robot Navigation module is designed to facilitate autonomous navigation for the Pepper robot by
computing paths, avoiding obstacles, and ensuring cultural proxemics are respected. This module inte-
grates path planning algorithms such as Breadth-First Search (BFS), Dijkstra, and A* to determine the
optimal trajectory between waypoints while maintaining real-time awareness of the environment.

The navigation process follows a structured approach: First, the module computes the shortest path from
the robot’s current position to the specified goal (x, y, θ) using a selected algorithm. Once the path is de-
termined, it is discretized into intermediate waypoints to facilitate smooth navigation. The system checks
its configuration space to account for static obstacles, ensuring safe movement. Finally, the robot executes
the planned trajectory by adjusting its velocity and rotation commands, allowing it to reach the target des-
tination efficiently.

The configuration space map is used to define accessible areas within the robot’s environment. This map
is essential for identifying free space, avoiding obstacles, and computing feasible navigation paths. The
workspace is represented as an occupancy grid, where white regions indicate navigable areas, and darker
regions correspond to obstacles or restricted zones. A sample configuration space map is shown in Figure
1.

Figure 1: The configuration space map highlights
areas that are navigable and restricted, ensuring safe
path planning.

Figure 2: Visualization of the waypoint-based nav-
igation approach. The robot follows the computed
waypoints to reach its goal.

To ensure efficient navigation, the module breaks the computed path into discrete waypoints. Each way-
point serves as an intermediate target, guiding the robot smoothly toward its final destination. The robot
continuously updates its position and recalculates waypoints when necessary. The map of the waypoints,

Date: 26/02/2025
Version: No 1.0

Page 6

D5.5.4 Robot Navigation

depicted in Figure 2, illustrates a sample navigation path with sequential waypoints.

The navigation module supports static map navigation, where the robot operates on a predefined map with
known obstacles. To execute a navigation task, the module requires an input, which is a goal pose (x, y,
θ) provided through a ROS service request. The processing phase involves path computation, waypoint
selection, and obstacle detection to ensure safe movement. Finally, the output consists of a sequence of
velocity commands that actuate the robot’s wheels, guiding it toward the desired destination.

The robot receives sensory data from the robotLocalization node and adjusts its navigation accordingly.
The final execution involves publishing velocity commands to the /cmd_vel topic, enabling movement
toward the desired goal while adhering to safety constraints.

Date: 26/02/2025
Version: No 1.0

Page 7

D5.5.4 Robot Navigation

4 Implementation

4.1 File Organization
The source code for executing the robot navigation functionality is structured into three primary compo-
nents: robotNavigationApplication, robotNavigationImplementation, and robotNavigationInterface. The
robotNavigationImplementation component encapsulates the core functionality required for robot naviga-
tion, including tasks such as path planning, obstacle avoidance, and waypoint management. It supports
various algorithms, including BFS, Dijkstra, and A*, and integrates features for cultural proxemics con-
straints, such as maintaining social distances. This component also processes critical files such as configu-
ration files, map data, and topic definitions to enable smooth navigation.

The robotNavigationApplication serves as the entry point for the navigation node, managing the exe-
cution of functions defined in the implementation and interface components. It initializes the ROS node,
sets up parameters, and orchestrates the navigation operations. The robotNavigationInterface defines the
abstract layer and function declarations that facilitate communication between the application and imple-
mentation layers, ensuring modularity and consistency in the codebase. This file structure promotes clean
separation of concerns, making the navigation system easier to maintain, extend, and debug while support-
ing scalable integration with other system components.

The file structure of the robot navigation node in the cssr_system package is organized as follows:

cssr system
robotNavigation

config
robotNavigationConfiguration.ini

data
robotTopics.dat
simulatorTopics.dat
navigationOutput.dat

include
robot navigation

robotNavigationInterface.h
moveTo.h

launch
robotNavigationLaunchRobot.launch
robotNavigationLaunchSimulator.launch

msg
Goal.msg

src
robotNavigationApplication.cpp
robotNavigationImplementation.cpp

srv
set goal.srv

README.md
CMakeLists.txt
package.xml

4.2 Configuration Parameters
The operation of the robotNavigation node is determined by the contents of a configuration file,
robotNavigationConfiguration.ini that contain a list of key-value pairs as shown below in
Table 1 [3].

Date: 26/02/2025
Version: No 1.0

Page 8

D5.5.4 Robot Navigation

Table 1: Configuration Parameters for robotNavigation node.
Key Values Effect
map scenarioOneMap.dat Specifies the workspace map file.
pathPlanning BFS, Dijkstra, A* Specifies the algorithm for path planning.
socialDistance true, false Enables/disables cultural proxemics con-

straints.
robotTopics pepperTopics.dat Sensor/actuator topics for the physical robot.
simulatorTopics simulatorTopics.dat Sensor/actuator topics for the simulator.
verboseMode true, false Enables verbose output with terminal logs and

OpenCV displays.

Input File
There is no specific input data file required for the robot navigation node. The navigation goals are pro-
cessed dynamically based on service or action requests received from client nodes.

Output File
There is no output data file generated by the robot navigation node. Instead, the outcome of the navigation
operation, such as successful goal completion or failure details, is communicated back to the invoking
client through the respective response mechanism. Additionally, diagnostic and status messages are logged
to the console, with the verbosity controlled by the verboseMode key in the configuration file. This
ensures that navigation operations are both responsive to real-time inputs and informative for debugging or
monitoring purposes.

Topics File
For the robot navigation node, a curated list of topics for the robot is maintained in dedicated topics files.
These file is stored in the .dat format and contain key-value pairs where each key represents the name of an
actuator, and the corresponding value specifies the associated topic. The topics file for the robot is named
robotTopics.dat. This file ensures proper communication and data flow between the node and its
respective hardware, providing a structured approach to topic management and facilitating operation in
different execution contexts.

Topics Subscribed
This node subscribes to one topic, published by the robotLocalization node, which provides the
pose of the robot, as summarized in Table 2.

Table 2: Topic Subscribed to by the robotNavigation node.
Topic Node Platform
/robotLocalization/pose robotLocalization Physical robot

Topics Published
The robotNavigation node publishes velocity commands to control the robot’s movement, as sum-
marized in Table 3.

Services Supported
This node provides and advertizes a server for a service /robotNavigation/set_goal to request
navigation to a given goal position and orientation. It uses a custom message to specify the pose with the x

Date: 26/02/2025
Version: No 1.0

Page 9

D5.5.4 Robot Navigation

Table 3: Topics Published by the robotNavigation node.
Topic Actuator Platform
/cmd_vel WheelFL, WheelFR, WheelB Physical robot

and y coordinates, and the angle of rotation θ about the z axis. If the navigation request is successful, the
service response is “1”; if it is unsuccessful, it is “0”. The service is called by the behaviorController
node, as summarized in Table 4.

Table 4: Services Provided and Called.
Service Message Value Effect
/robotNavigation/set_goal < x >< y >< θ > Define navigation goal pose.

Services Called
This node calls the following two services, as summarized in Table 5.

Table 5: Services Provided and Called.
Service Message Value Effect
/knowledgeBase/query To be defined Extract required knowledge from the

cultural knowledge base
/robotLocalization/reset_pose reset Reset the pose of the robot using ab-

solute localization

The type of variable that is passed as an argument to the /knowledgeBase/query service has not
yet been defined. This will be done when the node that services and advertizes these services are fully
specified. Similarly, the type of service call return value has not yet been defined. Again, this will be done
when the node that services and advertizes these services are fully specified

Date: 26/02/2025
Version: No 1.0

Page 10

D5.5.4 Robot Navigation

5 Executing Robot Navigation
The robotNavigation node is responsible for controlling the autonomous movement of the robot
within a predefined environment. It receives target destinations, computes optimal paths, and ensures
obstacle avoidance while navigating towards the goal. This section outlines the detailed steps required to
configure, launch, and test the robotNavigation node.

5.1 Environment Setup
Before executing the node, ensure the following dependencies are installed and configured correctly.

Install all necessary dependencies by navigating to the workspace and running:

cd ˜/workspace/pepper_rob_ws

rosdep install --from-paths src --ignore-src -r -y

Clone the CSSR4Africa repository into the robot’s workspace (if not already cloned):

cd ˜/workspace/pepper_rob_ws/src

git clone https://github.com/cssr4africa/cssr4africa.git

Build the package and source the environment:

cd ˜/workspace/pepper_rob_ws

catkin_make

source devel/setup.bash

Verify the package is correctly placed in the workspace:

ls ˜/workspace/pepper_rob_ws/src/cssr4Africa/cssr_system/robotNavigation

Figure 3: Screenshot of expected output showing the files and folders in the robotNavigation node from
the executed command

Configure the Node

The robotNavigation node is configured using pre-defined map and setting files. The configuration
parameters are set in the robotNavigationConfiguration.ini listed in Table 1. If necessary,
update the configuration values in the configuration file before starting the node.

Starting the Node

NOTE

Ensure that the robot localization node is running. If not, execute the following command:

rosrun cssr_system robotLocalization

To start the robotNavigation Node, execute the following command:

rosrun cssr_system robotNavigation

This will initialize the navigation system and display status messages indicating the node running.

Date: 26/02/2025
Version: No 1.0

Page 11

D5.5.4 Robot Navigation

Figure 4: Screenshot of the output of running the robotNavigation node.

5.2 Interacting with the Node
To check the robot’s current pose, execute the following command.

rostopic echo /robotNavigation/pose

This will output the robot’s current position and orientation.

Resetting the Pose

To manually reset the robot’s pose, use the following service call:

rosservice call /robotLocalization/reset_pose <x_position> <y_position> <theta
>

Figure 5: Screenshot of the rosservice call to reset the position responds a success message of true.

Sending a Goal

To command the robot to navigate to a specific position, use:

rosservice call /robotNavigation/set_goal goal_x goal_y goal_theta

Example:
rosservice call /robotNavigation/set_goal 2.0 6.6 0.0

If the navigation is successful, a confirmation message will be displayed.

Date: 26/02/2025
Version: No 1.0

Page 12

D5.5.4 Robot Navigation

Figure 6: Screenshot of the rosservice call to set goal for navigation responds a success message of 1.

6 Unit Test
Testing is a crucial step in the software development lifecycle, ensuring that each component of the system
performs as expected. The robotNavigation node requires validation to confirm that path planning,
goal execution, and obstacle avoidance work reliably under various conditions. Unit testing is employed
to assess these functionalities independently, following the structured testing guidelines outlined in Deliv-
erable D3.5 [4], System Integration and Quality Assurance. The robotNavigation node comprises
several key operations, including path planning, waypoint generation, pose retrieval, and velocity com-
mand execution. To ensure that these components function correctly, a unit test is developed using the
GoogleTest framework. These tests isolate functions and verify their expected behavior under different
scenarios.

6.1 File Organization and Its Purposes

unit tests
robotNavigationTest

config
robotNavigationTestConfiguration.ini

data
navigationUnitTestLogs.log
test goals.dat

include
robotNavigationTest

robotNavigationTestInterface.h
launch

robotNavigationTestLaunch.launch
msg

Goal.msg
src

robotNavigationDriver.cpp
robotNavigationTestApplication.cpp
robotNavigationTestImplementation.cpp

srv
NavigationTest.srv
set goal.srv

CSSR4AfricaLogo.svg
CMakeLists.txt
README.md

CMakeLists.txt
package.xml

The robotNavigationTest folder is structured to support unit testing of the Robot Navigation
unit test Node. The src directory contains robotNavigationDriver.cpp, which serves as the
driver for test execution, robotNavigationTestApplication.cpp, which manages the test flow,
and robotNavigationTestImplementation.cpp, which provides the core test logic.

The config directory houses the robotNavigationTestConfiguration.ini file, which
defines test parameters such as goal positions and navigation constraints, allowing customization of test

Date: 26/02/2025
Version: No 1.0

Page 13

D5.5.4 Robot Navigation

cases. The data folder contains test goals.dat, which stores predefined navigation goals for the
tests, and navigationUnitTestLogs.log, which captures the test execution logs, recording times-
tamps and goal completion statuses for debugging and validation.

6.2 Test Environment Setup
Before executing the robot navigation units tests, the testing environment must be properly configured.

1. Install all necessary dependencies:

cd ˜/workspace/pepper_rob_ws
rosdep install --from-paths src --ignore-src -r -y

2. Clone the CSSR4Africa repository into the workspace (if not already cloned):

cd ˜/workspace/pepper_rob_ws/src

git clone https://github.com/cssr4africa/cssr4africa.git

3. Build the workspace and source the environment:

cd ˜/workspace/pepper_rob_ws

catkin_make

source devel/setup.bash

The test execution is controlled using the configuration file robotNavigationTestConfiguration.ini,
located in the config directory of the unit test package. This file defines the test parameters, including
position tolerance, angle tolerance, and social distance.

6.3 Test Cases
The test cases evaluate the ability of the robotNavigation node to process navigation requests and
reach predefined goals.

1. SetGoalServiceAvailable: Verifies that the /robotNavigation/set goal service is available
before sending navigation commands.

2. SendNavigationGoalFromFile: Reads a list of predefined goals from the test goals.dat file
and sends them sequentially. The robot’s response is validated against expected success values.

6.4 Executing the Robot Navigation Unit Test
To start the unit test, use the following command:

cd ˜/workspace/pepper_rob_ws

rosrun unit_tests robotNavigationTest

Upon execution, the test sequence is initiated, and results are logged in the navigationUnitTestLogs.log
file.

Date: 26/02/2025
Version: No 1.0

Page 14

D5.5.4 Robot Navigation

Figure 7: Screenshot of the unit test command running.

6.5 Test Results
The results of the unit tests are categorized based on success and failure conditions. If a test case passes,
the corresponding success message is logged. Otherwise, an error message is generated with relevant
debugging details. The test reports are attached in Appendix I.

Date: 26/02/2025
Version: No 1.0

Page 15

D
5.5.4

R
obotN

avigation
Appendix I: Unit Test Logs
[2025-02-26 10:08:10] ===
[2025-02-26 10:08:10] === New Robot Navigation Test Run Started at 2025-02-26 10:08:10 ===
[2025-02-26 10:08:10] ===
[2025-02-26 10:08:10] Initializing Robot Navigation Node: PASSED
[2025-02-26 10:08:10] ---
[2025-02-26 10:08:10] Test Case 1: Goal to (5.0, 6.6, 0.0)
[2025-02-26 10:08:10] Sending goal...
[2025-02-26 10:08:31] [SUCCESS] Goal reached: (5.000000, 6.600000, 0.000000)
[2025-02-26 10:08:31] Goal execution successful: PASSED
[2025-02-26 10:08:31] ---
[2025-02-26 10:08:31] Test Case 2: Goal to (5.0, 2.0, 270.0)
[2025-02-26 10:08:31] Sending goal...
[2025-02-26 10:09:03] [SUCCESS] Goal reached: (5.000000, 2.000000, 270.000000)
[2025-02-26 10:09:03] Goal execution successful: PASSED
[2025-02-26 10:09:03] ---
[2025-02-26 10:09:03] Test Case 3: Goal to (5.0, 6.6, 90.0)
[2025-02-26 10:09:03] Sending goal...
[2025-02-26 10:09:53] [SUCCESS] Goal reached: (5.000000, 6.600000, 90.000000)
[2025-02-26 10:09:53] Goal execution successful: PASSED
[2025-02-26 10:09:53] ---
[2025-02-26 10:09:53] Test Case 4: Goal to (2.0, 6.6, 0.0)
[2025-02-26 10:09:53] Sending goal...
[2025-02-26 10:10:19] [SUCCESS] Goal reached: (2.000000, 6.600000, 0.000000)
[2025-02-26 10:10:19] Goal execution successful: PASSED
[2025-02-26 10:10:19] ---
[2025-02-26 10:10:19] ===
[2025-02-26 10:10:19] === Robot Navigation Test Run Completed at 2025-02-26 10:10:19 ===
[2025-02-26 10:10:19] ===

[2025-02-26 10:53:01] ===
[2025-02-26 10:53:01] === New Robot Navigation Test Run Started at 2025-02-26 10:53:01 ===
[2025-02-26 10:53:01] ===
[2025-02-26 10:53:01] Initializing Robot Navigation Node: PASSED
[2025-02-26 10:53:01] ---
[2025-02-26 10:53:01] Test Case 1: Goal to (3.2, 6.6, 0.0)
[2025-02-26 10:53:01] Sending goal...

D
ate:

26/02/2025
Version:

N
o

1.0
P

age
16

D
5.5.4

R
obotN

avigation
[2025-02-26 10:53:10] [SUCCESS] Goal reached: (3.200000, 6.600000, 0.000000)
[2025-02-26 10:53:10] Goal execution successful: PASSED
[2025-02-26 10:53:10] ---
[2025-02-26 10:53:10] Test Case 2: Goal to (3.2, 6.0, 270.0)
[2025-02-26 10:53:10] Sending goal...
[2025-02-26 10:53:11] [SUCCESS] Goal reached: (3.200000, 6.000000, 270.000000)
[2025-02-26 10:53:11] Goal execution failed: FAILED
[2025-02-26 10:53:11] ---
[2025-02-26 10:53:11] Test Case 3: Goal to (2.0, 6.0, 180.0)
[2025-02-26 10:53:11] Sending goal...
[2025-02-26 10:53:28] [SUCCESS] Goal reached: (2.000000, 6.000000, 180.000000)
[2025-02-26 10:53:28] Goal execution successful: PASSED
[2025-02-26 10:53:28] ---
[2025-02-26 10:53:28] Test Case 4: Goal to (2.0, 6.6, 0.0)
[2025-02-26 10:53:28] Sending goal...
[2025-02-26 10:54:22] [SUCCESS] Goal reached: (2.000000, 6.600000, 0.000000)
[2025-02-26 10:54:22] Goal execution failed: FAILED
[2025-02-26 10:54:22] ---
[2025-02-26 10:54:22] ===
[2025-02-26 10:54:22] === Robot Navigation Test Run Completed at 2025-02-26 10:54:22 ===
[2025-02-26 10:54:22] ===

D
ate:

26/02/2025
Version:

N
o

1.0
P

age
17

D5.5.4 Robot Navigation

References
[1] https://cssr4africa.github.io/deliverables/CSSR4africa deliverable d1.2.pdf.

[2] Work plan | culturally sensitive social robotics for africa.

[3] https://cssr4africa.github.io/deliverables/CSSR4africa deliverable d3.2.pdf.

[4] https://cssr4africa.github.io/deliverables/CSSR4africa deliverable d3.5.pdf.

Date: 26/02/2025
Version: No 1.0

Page 18

D5.5.4 Robot Navigation

Principal Contributors
The main authors of this deliverable are as follows:
Birhanu Shimelis Girma, Carnegie Mellon University Africa.

Date: 26/02/2025
Version: No 1.0

Page 19

D5.5.4 Robot Navigation

Document History
Version 1.0

First draft.
Birhanu Shimelis Girma.
17 December 2024.

Date: 26/02/2025
Version: No 1.0

Page 20

	Introduction
	Requirements Definition
	Module Specification
	Implementation
	File Organization
	Configuration Parameters

	Executing Robot Navigation
	Environment Setup
	Interacting with the Node

	Unit Test
	File Organization and Its Purposes
	Test Environment Setup
	Test Cases
	Executing the Robot Navigation Unit Test
	Test Results

	Appendix I: Unit Test Logs
	References
	Principal Contributors
	Document History

