
Culturally Sensitive Social Robotics
for Africa

D5.5.3 Environment Map Generation

Due date: 21/03/2025
Submission Date: 04/04/2025

Revision Date: n/a

Start date of project: 01/07/2023 Duration: 36 months

Lead organisation for this deliverable: Carnegie Mellon University Africa

Responsible Person: Birhanu Shimelis Girma Revision: 1.0

Project funded by the African Engineering and Technology Network (Afretec)
Inclusive Digital Transformation Research Grant Programme

Dissemination Level
PU Public PU
PP Restricted to other programme participants (including Afretec Administration)
RE Restricted to a group specified by the consortium (including Afretec Administration)
CO Confidential, only for members of the consortium (including Afretec Administration)

D5.5.3 Environment Map Generation

Executive Summary
Deliverable D5.5.3 Environment Map Generation focuses on the development of a software module that
generates metric workspace and configuration space maps of the environments used in the project’s two
use case scenarios. These maps include non-symbolic metric data, enabling the Pepper robot to perform
path planning and navigate during human-robot interactions. The deliverable focuses primarily on map
generation from a priori CAD data.

The software module, implemented as a ROS node named mapGeneration, produces a map that
captures the physical layout of environments using pre-defined geometric data to construct the map. This
method generates non-symbolic metric maps visualizable as an image. The module also generates config-
uration space maps through image dilation, providing essential data for robot navigation planning.

The development process followed a structured approach that included requirement definition, module
specification, implementation, and unit testing. Each phase adhered to the software engineering standards
established in Deliverable D3.2, ensuring maintainability and reliability. The configurabiliy of the module
through the mapGenerationConfiguration.ini file facilitates its operation in different environ-
ments.

Unit testing confirmed the module’s functionality in CAD mode, with tests executed on the physical
robot. The tests verified the accuracy of map generation, and the effectiveness of configuration space
computation. Overall, this deliverable provides a flexible mapping solution that integrates seamlessly with
other components of the system architecture.

Date: 04/04/2025
Version: No 1.0

Page 2

D5.5.3 Environment Map Generation

Contents
1 Introduction 4

2 Requirements Definition 5

3 Module Specification 6
3.1 Functional Overview . 6
3.2 Input Data Specification . 6
3.3 Algorithms and Data Structures . 6

4 Implementation 7

5 Executing Environment Map Generation 9
5.1 Environment Setup . 9
5.2 Interacting with the Node . 9

6 Unit Test 11
6.1 File Organization and Its Purposes . 11
6.2 Test Environment Setup . 11
6.3 Test Cases . 11
6.4 Executing the Map Generation Unit Test . 13
6.5 Test Results . 13

Appendix I: Unit Test Logs 14

References 16

Principal Contributors 17

Document History 18

Date: 04/04/2025
Version: No 1.0

Page 3

D5.5.3 Environment Map Generation

1 Introduction
This deliverable represents the output of Task 5.5.3, which aims to develop a software module for envi-
ronment map generation. The module enables the Pepper robot to navigate and make meaningful deictic
gestures by providing map that includes physical layout information.

Environment mapping is a fundamental capability for autonomous robots operating in human-centered
spaces. In the context of the CSSR4Africa project, the map serves dual purposes: allowing physical navi-
gation through spaces and supporting meaningful human-robot interaction through references to objects in
the environment. The map generation module bridges these requirements by producing a map with metric
precision.

The module supports map generation through a CAD-based approach, which uses a priori data, typi-
cally from Computer-Aided Design (CAD) files, to construct the map. The advantage of this method is that
it can produce detailed maps without the need for the robot to physically explore the environment. It relies
on structured geometric descriptions of the environment to generate workspace and configuration space
maps. A workspace map representing the physical environment and a configuration space map derived
through image dilation that accounts for the robot’s physical dimensions.

The implementation of the mapGeneration ROS node adheres to the software engineering stan-
dards documented in Deliverable D3.2. It integrates with other system components, like robot localization,
robot navigation, and particularly the robot mission interpreter, which relies on the generated maps for mis-
sion execution. The module’s development followed a systematic software engineering process, ensuring
maintainability, and integration with the broader system architecture.

This document details each phase of the development process, from requirements definition through to
unit testing, providing a comprehensive overview of the module’s functionality, design decisions, and im-
plementation details. The subsequent sections elaborate on the technical aspects of the mapping approach,
and the integration with other system components.

Date: 04/04/2025
Version: No 1.0

Page 4

D5.5.3 Environment Map Generation

2 Requirements Definition
The environment map generation module fulfills the functional needs of the users and meets the require-
ments outlined in the work plan. This section defines the specific requirements that guided the development
of the module.

The module must support map generation using a CAD-based approach with a priori environment data.
The generated maps include non-symbolic metric data visualizable as images, and configuration space
maps derived through image dilation.

The configuration space generation functionality converts workspace maps to configuration space maps,
applies image dilation using a structuring element modeling the robot’s base, and ensures the configuration
space accurately represents robot navigability. Integration capabilities include publishing map data on ap-
propriate ROS topics, supporting data access by other modules in the system, and maintaining compatibility
with the Robot Mission Interpreter.

The module supports both the normal operation mode and verbose mode for diagnostics and debugging.
In terms of platform compatibility, the module works with both the physical Pepper robot and the Pepper
simulator.

Non-functional requirements include performance specifications, where the module generates maps
with sufficient resolution for navigation (typically 0.05-0.1 meters per pixel). Reliability requirements
ensure the module generates consistent maps across multiple executions with the same input data, handles
edge cases such as complex geometries and overlapping objects, and recovers gracefully from errors in
input data.

The module provides an intuitive interface for map visualization, includes comprehensive error mes-
sages for troubleshooting, and supports configurability through parameters. It follows the coding standards
outlined in Deliverable D3.2, includes comprehensive internal documentation, and implements modular
design for future extensions. Compatibility requirements ensure the module generates maps in formats
compatible with ROS navigation stack and supports standard message types for map data.

Date: 04/04/2025
Version: No 1.0

Page 5

D5.5.3 Environment Map Generation

3 Module Specification
The module specification defines the functional capabilities of the environment map generation module,
detailing the input to output data transformations, expected input data, output formats, and configuration
parameters, as well as the algorithms and data structures used for map generation.

3.1 Functional Overview
The mapGeneration module transforms input data from CAD files into a structured representation of
the environment with metric information. This transformation includes processing input data to generate a
workspace map, applying image dilation to create a configuration space map, saving maps and object data
to a file.

3.2 Input Data Specification
The module accepts input parameters including map dimensions (width and height in millimeters), obstacle
file (containing geometric descriptions of obstacles), parameters file (containing environment parameters),
map resolution (meters per pixel), and output filenames for workspace map, and configuration space map.

3.3 Algorithms and Data Structures
The CAD-based map generation uses a geometric processing algorithm that parses geometric primitives
from the input file, converts to occupancy grid representation, and uses rasterization algorithms for different
geometric shapes (Bresenham’s [1] line algorithm for rectangle edges, flood-fill for interior regions, circle
rasterization for circular objects, and polygon filling for complex shapes).

The configuration space generation uses an image dilation algorithm that converts the occupancy grid
to a binary image, defines a structuring element based on robot dimensions (circular element for omnidi-
rectional base, size determined by robotRadius parameter), applies morphological dilation operation,
and converts the dilated image back to an occupancy grid. The implementation uses OpenCV for efficient
image processing, applies the cv::dilate function with appropriate kernel, and handles edge conditions
at map boundaries.

The module is structured with primary classes including MapGenerator (main class that or-
chestrates the mapping process), CADMapBuilder (implements CAD-based map generation), and
ConfigSpaceGenerator (generates configuration space from the workspace map).

Date: 04/04/2025
Version: No 1.0

Page 6

D5.5.3 Environment Map Generation

4 Implementation
This section details the implementation of the environment map generation module, including file organi-
zation, configuration, and core functionality.

File Organization
The file structure of the map generation module in the cssr system package is organized as follows:

cssr system
mapGeneration

config
mapGenerationConfiguration.ini

data
obstacles.txt
parameters.txt
mapGenerationInput.txt

include
mapGeneration

mapGeneration.h
launch

mapGenerationLaunchRobot.launch
src

mapGenerationApplication.cpp
mapGenerationImplementation.cpp

README.md
CMakeLists.txt

Configuration Parameters
The operation of the mapGeneration node is determined by the contents of a configuration file,
mapGenerationConfiguration.ini, that contains a list of key-value pairs as shown below in
Table 1.

Table 1: Configuration Parameters for mapGeneration node.
Key Values Effect
mode CAD, SLAM Specifies the map generation approach
verboseMode true, false Enables/disables diagnostic output
resolution decimal value Specifies map resolution in meters per pixel
robotRadius decimal value Specifies the robot base radius
inputFile string The input file name

Input Files
For CAD-based map generation, the module requires mapGenerationInput.txt (containing basic
parameters including map dimensions, filenames, and resolution), obstacles.txt (defining geometric
primitives such as rectangles).

Date: 04/04/2025
Version: No 1.0

Page 7

D5.5.3 Environment Map Generation

The input files include:
mapGenerationInput.txt:

680 993 # Map dimensions in millimeters (width, height)
obstacles.txt # File containing obstacle definitions
parameters.txt # File containing environment parameters
environmentMap.png # Output filename for workspace map
configurationSpaceMap.png # Output filename for configuration space map

obstacles.txt:

OBSTACLE 2.5775 3.12 2.315 1.44 # Format: TYPE X Y WIDTH HEIGHT
OBSTACLE 1.3 0.45 2.60 0.90
OBSTACLE 2.20 0.30 4.40 0.60
OBSTACLE 3.31 1.925 0.22 0.25

Output File
The workspace map represents the physical environment in PNG image format and as a ROS
OccupancyGrid map representation of free/occupied space, and saved to a file as specified in
mapGenerationInput.txt.

The configuration space map accounts for robot dimensions, also in PNG image format and as a
ROS OccupancyGrid map representation of the robot navigable space, and saved to a file as specified
in mapGenerationInput.txt.

Figure 1: A workspace map representing the
physical environment in PNG image format.

Figure 2: A configuration space map accounting
for robot dimensions, also in PNG image for-
mat and an OccupancyGrid map representation
of the robot navigable space.

Date: 04/04/2025
Version: No 1.0

Page 8

D5.5.3 Environment Map Generation

5 Executing Environment Map Generation
This section provides a comprehensive guide on setting up, configuring, and executing the mapGeneration
node on the physical Pepper robot.

5.1 Environment Setup
Before executing the node, several setup steps must be completed to ensure all dependencies are installed
and configured correctly. First, all necessary dependencies are installed by navigating to the workspace and
running:

cd ∼/workspace/pepper_rob_ws

rosdep install --from-paths src --ignore-src -r -y

• If the CSSR4Africa repository has not been cloned yet, this must be done by:
cd ∼/workspace/pepper_rob_ws/src

git clone https://github.com/cssr4africa/cssr4africa.git

• Build the package and source the environment:
cd ∼/workspace/pepper_rob_ws

catkin_make

source devel/setup.bash

• Verify the package is correctly placed in the workspace:
ls ∼/workspace/pepper_rob_ws/src/cssr4africa/cssr_system/mapGeneration

Figure 3: Expected output showing the files and folders in the mapGeneration node

5.2 Interacting with the Node
Starting the Node

To start the mapGeneration node directly, the following command is used:
rosrun cssr_system mapGeneration

Figure 4: Screenshot of the output of running the mapGeneration node.

Date: 04/04/2025
Version: No 1.0

Page 9

D5.5.3 Environment Map Generation

Verifying the Results

After map generation is complete, the results should be verified by checking that the output files have been
created in the specified location cssr system/mapGeneration/data, inspecting the workspace
map and configuration space map for accuracy.

Date: 04/04/2025
Version: No 1.0

Page 10

D5.5.3 Environment Map Generation

6 Unit Test
Unit testing verifies that the module meets its specifications and functions correctly in various scenarios.
This section details the testing approach, setup, and results for the environment map generation node.

It’s important to note that the mapGeneration node has been designed to operate independently of the
physical robot hardware. Users can generate environment maps and configuration space maps without
needing to connect to a Pepper robot. Since the CAD-based map generation relies solely on geometric data
provided in the input files, no sensor data or robot connectivity is required. This makes the node useful
for pre-planning environments before deploying the robot, and enables development and testing on any
computer with ROS installed.

6.1 File Organization and Its Purposes
The unit tests for the map generation module are organized in the following directory structure:

unit tests
mapGenerationTest

config
mapGenerationTestConfiguration.ini

data
test obstacles.txt
test parameters.txt
test input.txt
test output.logs

include
mapGenerationTest

mapGenerationInterfaceTest.h
launch

mapGenerationLaunchTestHarness.launch
src

mapGenerationTestDriver.cpp
mapGenerationTestApplication.cpp
mapGenerationTestImplementation.cpp

CMakeLists.txt
README.md

CMakeLists.txt
package.xml

The purpose of each file in this structure is to support testing of the map generation node. The configuration
file sets test parameters, the data file provides input for the tests, the header file defines interfaces for testing,
the source files implement the test cases, and the launch files enable easy execution of tests.

6.2 Test Environment Setup
The unit tests are designed to validate CAD-based map generation functionality. Before executing the tests,
the testing environment must be properly configured. All necessary dependencies must be installed, the
CSSR4Africa repository must be cloned into the workspace if not already present, and the workspace must
be built and sourced.

6.3 Test Cases
The unit tests are designed to validate specific functionality of the map generation node across different
scenarios. Each test case focuses on different aspects of the map generation process:

Test Case 1: Basic CAD Map Generation (TestCADMapGeneration) This test verifies that the node
correctly generates a workspace map from a basic test obstacles file. It checks for proper parsing of obstacle

Date: 04/04/2025
Version: No 1.0

Page 11

D5.5.3 Environment Map Generation

data from input files, correct rendering of rectangular obstacles on the map, correct map dimensions based
on input specifications, and Proper boundary handling.

Expected Output: A workspace map showing rectangular obstacles as specified in the test obstacles.txt
file. The resulting map should match the reference image shown in Figure 5.

Test Case 2: Configuration Space Generation (TestConfigSpaceGeneration) This test validates the di-
lation algorithm used to create the configuration space. It tests the generation of configuration spaces
with varying robot radii (0.1m, 0.2m, 0.3m, 0.5m, and 0.8m), correct application of structuring elements
based on robot dimensions, progressive increase in obstacle area as robot radius increases, and consistent
handling of map boundaries during dilation.

Expected Output: Three configuration space maps with progressively larger dilated obstacles, corre-
sponding to the different robot radii. Figure 6,7, and 8 shows the comparison between the workspace map
and a configuration space map with at a different robot radius.

Figure 5: Workspace map showing the obstacles
from TestCADMapGeneration

Figure 6: Configuration space map with 0.1m
robot radius

Figure 7: Configuration space map with 0.3m
robot radius

Figure 8: Configuration space map with 0.5m
robot radius

Each test case generates both workspace and configuration space maps, which can be found in the test
output directory after test execution. The test logs (shown in Appendix I) provide detailed information
about each test’s execution and verification steps.

Date: 04/04/2025
Version: No 1.0

Page 12

D5.5.3 Environment Map Generation

6.4 Executing the Map Generation Unit Test
To run the unit tests, the provided launch file is used:

roslaunch unit_tests mapGenerationLaunchTestHarness.launch

Alternatively, individual tests can be run directly:

rosrun unit_tests mapGenerationTest

6.5 Test Results
The results of the unit tests confirm that the map generation node meets all specified requirements for CAD-
based mapping. The node successfully generates workspace maps, and computes configuration spaces.
Performance is within expected parameters, ensuring the module can operate efficiently in real-world con-
ditions.

All test cases (TestCADMapGeneration, and TestConfigSpaceGeneration) have passed, indicating that
the node functions correctly according to its specifications. Detailed test logs are included in Appendix I,
providing a comprehensive record of all test executions.

Date: 04/04/2025
Version: No 1.0

Page 13

D
5.5.3

E
nvironm

entM
ap

G
eneration

Appendix I: Unit Test Logs
[2025-03-31 08:27:36] ===
[2025-03-31 08:27:36] === New Map Generation Test Run Started at 2025-03-31 08:27:36 ===
[2025-03-31 08:27:36] ===
[2025-03-31 08:27:36] Initializing Map Generation Node: PASSED
[2025-03-31 08:27:36] ---
[2025-03-31 08:27:36] Test Case: MapGenerationTest.EmptyMapCreation
[2025-03-31 08:27:36] Loaded radius1: 0.100000m
[2025-03-31 08:27:36] Loaded radius2: 0.200000m
[2025-03-31 08:27:36] Loaded radius3: 0.300000m
[2025-03-31 08:27:36] Loaded radius4: 0.500000m
[2025-03-31 08:27:36] Loaded radius5: 0.800000m
[2025-03-31 08:27:36] Loading test configuration file...
[2025-03-31 08:27:36] Generating workspace map...
[2025-03-31 08:27:36] [SUCCESS] Workspace map generated successfully
[2025-03-31 08:27:38] Verifying map dimensions (680x993): PASSED
[2025-03-31 08:27:38] Verifying obstacle placement: PASSED
[2025-03-31 08:27:38] ---
[2025-03-31 08:27:38] Test Case: MapGenerationTest.MapWithObstacles
[2025-03-31 08:27:38] Loaded radius1: 0.100000m
[2025-03-31 08:27:38] Loaded radius2: 0.200000m
[2025-03-31 08:27:38] Loaded radius3: 0.300000m
[2025-03-31 08:27:38] Loaded radius4: 0.500000m
[2025-03-31 08:27:38] Loaded radius5: 0.800000m
[2025-03-31 08:27:38] Loading complex obstacles file...
[2025-03-31 08:27:38] Generating workspace map...
[2025-03-31 08:27:38] [SUCCESS] Workspace map generated successfully
[2025-03-31 08:27:40] Verifying complex obstacle placement: PASSED
[2025-03-31 08:27:40] ---
[2025-03-31 08:27:40] Test Case: MapGenerationTest.ConfigurationSpaceGeneration
[2025-03-31 08:27:40] Loaded radius1: 0.100000m
[2025-03-31 08:27:40] Loaded radius2: 0.200000m
[2025-03-31 08:27:40] Loaded radius3: 0.300000m
[2025-03-31 08:27:40] Loaded radius4: 0.500000m
[2025-03-31 08:27:40] Loaded radius5: 0.800000m
[2025-03-31 08:27:40] Loading test workspace map...
[2025-03-31 08:27:40] Generating configuration spaces with different robot radii...

D
ate:

04/04/2025
Version:

N
o

1.0
P

age
14

D
5.5.3

E
nvironm

entM
ap

G
eneration

[2025-03-31 08:27:40] Testing with radius 0.100000m...
[2025-03-31 08:27:41] [SUCCESS] Configuration space generated for radius 0.100000m
[2025-03-31 08:27:41] Testing with radius 0.200000m...
[2025-03-31 08:27:43] [SUCCESS] Configuration space generated for radius 0.200000m
[2025-03-31 08:27:43] Testing with radius 0.300000m...
[2025-03-31 08:27:44] [SUCCESS] Configuration space generated for radius 0.300000m
[2025-03-31 08:27:44] Testing with radius 0.500000m...
[2025-03-31 08:27:45] [SUCCESS] Configuration space generated for radius 0.500000m
[2025-03-31 08:27:45] Testing with radius 0.800000m...
[2025-03-31 08:27:47] [SUCCESS] Configuration space generated for radius 0.800000m
[2025-03-31 08:27:47] Comparing radius 0.100000m vs 0.200000m: 501404 vs 538581 obstacle pixels: PASSED
[2025-03-31 08:27:47] Comparing radius 0.200000m vs 0.300000m: 538581 vs 573427 obstacle pixels: PASSED
[2025-03-31 08:27:47] Comparing radius 0.300000m vs 0.500000m: 573427 vs 631380 obstacle pixels: PASSED
[2025-03-31 08:27:47] Comparing radius 0.500000m vs 0.800000m: 631380 vs 673789 obstacle pixels: PASSED
[2025-03-31 08:27:47] Comparing dilation results: PASSED
[2025-03-31 08:27:47] Verifying dilation effect: PASSED
[2025-03-31 08:27:47] ---
[2025-03-31 08:27:47] ===
[2025-03-31 08:27:47] === Map Generation Test Run (CAD Mode) Completed at 2025-03-31 08:27:47 ===
[2025-03-31 08:27:47] === All tests PASSED ===
[2025-03-31 08:27:47] ===

D
ate:

04/04/2025
Version:

N
o

1.0
P

age
15

D5.5.3 Environment Map Generation

References
[1] J. E. Bresenham. Algorithm for computer control of a digital plotter. 4(1):25–30. Conference Name:

IBM Systems Journal.

Date: 04/04/2025
Version: No 1.0

Page 16

D5.5.3 Environment Map Generation

Principal Contributors
The main authors of this deliverable are as follows:
Birhanu Shimelis Girma, Carnegie Mellon University Africa.

Date: 04/04/2025
Version: No 1.0

Page 17

D5.5.3 Environment Map Generation

Document History
Version 1.0

First draft.
Birhanu Shimelis Girma.
04 April 2025.

Date: 04/04/2025
Version: No 1.0

Page 18

	Introduction
	Requirements Definition
	Module Specification
	Functional Overview
	Input Data Specification
	Algorithms and Data Structures

	Implementation
	Executing Environment Map Generation
	Environment Setup
	Interacting with the Node

	Unit Test
	File Organization and Its Purposes
	Test Environment Setup
	Test Cases
	Executing the Map Generation Unit Test
	Test Results

	Appendix I: Unit Test Logs
	References
	Principal Contributors
	Document History

