
Culturally Sensitive Social Robotics
for Africa

D5.5.2.4 Integrated Text to Speech Conversion

Due date: 21/03/2025
Submission Date: 21/03/2025

Revision Date: 25/04/2025

Start date of project: 01/07/2023 Duration: 36 months

Lead organisation for this deliverable: Carnegie Mellon University Africa

Responsible Person: Richard Muhirwa Revision: 1.2

Project funded by the African Engineering and Technology Network (Afretec)
Inclusive Digital Transformation Research Grant Programme

Dissemination Level
PU Public PU
PP Restricted to other programme participants (including Afretec Administration)
RE Restricted to a group specified by the consortium (including Afretec Administration)
CO Confidential, only for members of the consortium (including Afretec Administration)

D5.5.2.4 Integrated Text to Speech
Conversion

Executive Summary

Deliverable D5.5.2.4 presents the outcomes of Task 5.5.2.4, which integrates the outputs of Tasks
5.5.2.1 (English Text-to-Speech) and 5.5.2.3 (Kinyarwanda Text-to-Speech) into a unified system.
This document outlines the results of each stage of the software development process, covering re-
quirements definition, module specification, interface design, module design, testing, and implemen-
tation. The Integrated Text-to-Speech system enables the Pepper robot to transform written text in
either English or Kinyarwanda into spoken words through its internal speakers. This capability is fun-
damental to the robot’s ability to verbally communicate with users in multiple languages, supporting
a wide range of interactions from basic greetings to complex information delivery. The system ac-
cepts text input via ROS messages on the /textToSpeech topic and processes this text through the
appropriate language-specific speech synthesis module based on configuration settings. This report
details the functional requirements, interface design specifications, module architecture, testing ap-
proach, and implementation instructions for the integrated Text-to-Speech conversion system. Testing
results confirm that the Pepper robot’s multilingual TTS system functions correctly, producing clear
speech in both English and Kinyarwanda for a wide range of inputs, and maintaining stability even
under stress conditions.

Date: 25/04/2025
Version: No 1.2

Page 2

D5.5.2.4 Integrated Text to Speech
Conversion

Contents

1 Introduction 5

2 Requirements Definition 6
2.1 Overview . 6
2.2 Functional Specification . 6
2.3 Text Processing and Speech Synthesis . 6
2.4 Configuration Management . 7
2.5 Inputs and Outputs . 7

2.5.1 Service Provided . 7
2.5.2 Topics Published (English Mode) . 7

2.6 External Dependencies and Integration . 7
2.7 Error Handling and Logging . 8

3 Function specification 9
3.1 Functional Characteristics . 9

3.1.1 Text-to-Speech Conversion . 9
3.1.2 Operation Modes . 9
3.1.3 Audio File Generation and Playback . 9
3.1.4 ROS Integration . 9

3.2 Inputs and Outputs . 9
3.2.1 Inputs . 10
3.2.2 Outputs . 10

3.3 Dependencies . 10
3.3.1 Common Dependencies . 10
3.3.2 English TTS Dependencies . 10
3.3.3 Kinyarwanda TTS Dependencies . 10

3.4 Execution Workflow . 11
3.5 System Requirements . 11
3.6 Limitations and Assumptions . 11

4 Interface Design 12
4.1 Directory Structure . 12
4.2 ROS Service Definitions . 12

4.2.1 Text-to-Speech Service . 12
4.3 ROS Topic Interface . 13
4.4 Configuration Interface . 13
4.5 External Script Interface . 13
4.6 Error Handling . 13

5 Module Design 14
5.1 Overall Architecture . 14
5.2 Language Management . 14
5.3 Configuration Management . 14
5.4 Module Initialization . 15
5.5 English TTS Implementation . 15

Date: 25/04/2025
Version: No 1.2

Page 3

D5.5.2.4 Integrated Text to Speech
Conversion

5.6 Kinyarwanda TTS Implementation . 16
5.7 Service Handler Implementation . 16
5.8 Paths and Configuration . 16

6 User Manual 17
6.1 Common Issues . 17

6.1.1 NAOqi Driver Connection Failure . 17

7 Unit Testing 18
7.1 Test Results: Audio Playback . 18
7.2 Test Results: TTS Service . 18

References 20

Principal Contributors 21

Document History 22

Date: 25/04/2025
Version: No 1.2

Page 4

D5.5.2.4 Integrated Text to Speech
Conversion

1 Introduction

The integrated TTS module developed in this deliverable combines the capabilities of both English
and Kinyarwanda text-to-speech conversion into a single unified system. This integration allows
for seamless switching between languages, enabling the Pepper robot to communicate effectively in
multilingual environments.

The basic workflow of the integrated TTS system follows this pattern: Text input is received via a
ROS service call to /textToSpeech/say text.

For English text, the system publishes to the /speech, and for Kinyarwanda text, the Coqui TTS
model generates a WAV file that is transferred to the robot via SSH and played using the ALAudio-
Player topic for processing by NAOqi.

A success response is returned to the service caller
This dual-path architecture leverages the strengths of each approach: utilizing the robot’s built-

in capabilities for English speech while employing advanced neural TTS models for Kinyarwanda,
where native support is not available in the NAOqi framework.

The implementation addresses practical challenges in multilingual robotics, such as integrating
Python 3-based modern TTS frameworks with the Python 2-based NAOqi SDK, and handling the
secure transfer and playback of generated audio files. This approach ensures optimal speech quality
while maintaining a clean, unified interface for the rest of the robot’s systems.
This deliverable is structured as follows:

Section 2 outlines the system’s functional and design considerations for the dual-language text-to-
speech system. It details the service-based architecture and language-specific processing approaches.
Section 3 presents the module specification, detailing the text-to-speech conversion process for both
English and Kinyarwanda languages. It explains how the system leverages NAOqi’s built-in capabil-
ities for English while employing the Coqui TTS neural model for Kinyarwanda speech synthesis.
Section 4 describes the interface design, covering the ROS service definition, configuration file for-
mat, and the bridge mechanism between Python 3 and Python 2 environments. It details how the
system handles text input through the service interface and manages audio output through both direct
topic publishing and SSH-based file transfer. Section 5 details the module’s architecture, including
component interactions between the ROS node, NAOqi framework, and Coqui TTS library. Section
6 contains a user manual with step-by-step instructions for configuration, and usage. It provides guid-
ance on setting up the required dependencies, configuring language preferences, and invoking the
text-to-speech service programmatically. Section 7 provides an overview of the testing procedures,
including unit tests for each language path and system validation under various network conditions
and text input scenarios.

Date: 25/04/2025
Version: No 1.2

Page 5

D5.5.2.4 Integrated Text to Speech
Conversion

2 Requirements Definition

2.1 Overview

The objective of the integrated Text-to-Speech (TTS) system is to develop a software module that
enables the robot to convert text input in either English or Kinyarwanda into natural-sounding speech.
The system identifies the target language, processes the text accordingly, and generates appropriate
audio output for playback on the robot’s speakers. This TTS functionality serves as a crucial compo-
nent for robot communication, enabling verbal interaction with users in multilingual contexts.

2.2 Functional Specification

The integrated TTS system operates as a ROS node called textToSpeech and provides the robot
with the ability to vocalize text content in multiple languages. It supports two primary modes of
operation:

1. English Mode: Utilizes the NAOqi ALTextToSpeech system by publishing messages to the
/speech topic, which is then processed by the robot’s built-in speech capabilities.

2. Kinyarwanda Mode: Employs the Coqui TTS model to generate speech waveforms that are
then transferred to the robot via SSH and played using the ALAudioPlayer proxy.

The system switches between these modes based on configuration settings while maintaining con-
sistent quality standards across both languages.

2.3 Text Processing and Speech Synthesis

The system performs two key processes:

• Text Parsing and Preprocessing: The system receives text input through a ROS service in-
terface (/textToSpeech/say text), which accepts string messages. It processes the text
according to the selected language mode.

• Speech Synthesis: For English, the system publishes the text to the /speech topic for native
NAOqi processing. For Kinyarwanda, it utilizes the Coqui TTS model with conditioning au-
dio to maintain consistent voice characteristics. The Kinyarwanda synthesis process creates a
temporary WAV file, which is then securely copied to the robot via SSH and played using the
ALAudioPlayer, with proper cleanup afterward.

The subsystem incorporates error handling mechanisms to provide meaningful feedback when
errors occur, particularly when loading the Kinyarwanda speech synthesis components.

Date: 25/04/2025
Version: No 1.2

Page 6

D5.5.2.4 Integrated Text to Speech
Conversion

2.4 Configuration Management

The robot’s speech system is configured through a dedicated configuration file
(textToSpeechConfiguration.ini) that specifies:

1. Language selection (English or Kinyarwanda)

2. Verbose mode enabling or disabling for debugging purposes

3. Robot IP address for connection

4. Communication port for NAOqi services

The system falls back to default configuration values if the configuration file cannot be read or
processed, ensuring continuous operation even in the event of configuration errors.

2.5 Inputs and Outputs

2.5.1 Service Provided

The textToSpeech node provides a service for text vocalization:

Service Type Description
/textToSpeech/say text text to speech/TTS Service that accepts text messages and

returns success status

Table 1: TTS Service Specification

2.5.2 Topics Published (English Mode)

When operating in English mode, the system publishes to:

Topic Type Content
/speech std msgs/String Text content to be spoken by NAOqi ALText-

ToSpeech

Table 2: TTS Published Topics

2.6 External Dependencies and Integration

The TTS system relies on several external components for operation:

• NAOqi Framework: Utilized for both direct English TTS via topic publishing and for audio
playback in Kinyarwanda mode via the ALAudioPlayer proxy.

• Coqui TTS: Python library used for Kinyarwanda speech synthesis, requiring pre-trained mod-
els and configuration files located in the model files directory.

• SSH Communication: Secure file transfer to the robot for Kinyarwanda audio playback, re-
quiring proper authentication and file management.

Date: 25/04/2025
Version: No 1.2

Page 7

D5.5.2.4 Integrated Text to Speech
Conversion

The system uses a Python 2 bridge script (send and play audio.py) to interface with the
NAOqi framework for audio playback, bridging the gap between the modern Python 3 ROS node and
the Python 2 NAOqi SDK requirements.

2.7 Error Handling and Logging

The system implements several mechanisms for error management:

• Configuration errors: Fallback to default values with appropriate warnings

• Model loading errors: Critical error logging and process termination if TTS models cannot be
loaded

• Operation feedback: Logging of text being spoken and the selected language

• Service response: Boolean success indication in the service response

All errors and operational messages are logged through the ROS logging infrastructure to facilitate
debugging and system monitoring.

Date: 25/04/2025
Version: No 1.2

Page 8

D5.5.2.4 Integrated Text to Speech
Conversion

3 Function specification

3.1 Functional Characteristics

3.1.1 Text-to-Speech Conversion

The integrated TTS module consists of a unified ROS node (textToSpeech) that handles text-to-
speech conversion for both English and Kinyarwanda languages. The language selection is determined
by a configuration parameter in the textToSpeechConfiguration.ini file.

For English text, the system publishes messages to the /speech topic, which is then processed
by the NAOqi framework to generate speech through the robot’s internal speakers. For Kinyarwanda
text, the system employs a TTS Synthesizer from the TTS library to generate a temporary WAV file,
which is then transferred to the robot and played using the NAOqi ALAudioPlayer.

3.1.2 Operation Modes

The system supports two operation modes. In Normal Mode, standard operation occurs where text
is converted to speech without additional output. In Verbose Mode, extended operation provides
additional information logged for monitoring and debugging purposes.

3.1.3 Audio File Generation and Playback

For English TTS, the system publishes text to the /speech topic, which is then handled by the
NAOqi driver for direct speech synthesis on the robot.

For Kinyarwanda TTS, the system follows a more complex process. First, it uses the TTS Syn-
thesizer to generate audio data. Then, it creates a temporary WAV file. This file is transferred to the
robot using SCP via a Python 2 script. Once transferred, the system plays the file using the NAOqi
ALAudioPlayer, and finally removes the temporary file after playback [1].

3.1.4 ROS Integration

The module operates as a ROS node named textToSpeech. This node provides a service
/textToSpeech/say text to handle text-to-speech requests. It publishes to the /speech topic
for English text and calls external scripts for Kinyarwanda text processing and playback.

3.2 Inputs and Outputs

The TTS module receives input text via a ROS service call, with the following specifications:

Parameter Specification
Format UTF-8 encoded text string
Maximum Length 1000 characters
Languages Supported English, Kinyarwanda
Special Characters Supported based on language requirements
Input Method ROS service calls

Table 3: Input Text Specifications

Date: 25/04/2025
Version: No 1.2

Page 9

D5.5.2.4 Integrated Text to Speech
Conversion

3.2.1 Inputs

The system receives input through a ROS Service /textToSpeech/say text, which uses a cus-
tom TTS service type with a message field. This service accepts text strings to be converted to
speech in either English or Kinyarwanda. Additionally, the system reads from a configuration file
textToSpeechConfiguration.ini, which contains several parameters. These include the
language selection (english or kinyarwanda), verboseMode setting (True or False), the robot’s IP ad-
dress, and port number.

3.2.2 Outputs

The system produces several types of output. For English text, it publishes to a ROS Topic /speech
using the std msgs/String type. This contains the text to be spoken by the NAOqi framework.
For Kinyarwanda, it generates an audio file - specifically a temporary WAV file that is transferred to
the robot for playback. The system also provides logging through ROS logs for status information
and debugging purposes.

3.3 Dependencies

3.3.1 Common Dependencies

The system relies on several common dependencies. These include ROS (with rospy), NAOqi drivers,
Python 2 and Python 3.9 environments, and ConfigParser.

3.3.2 English TTS Dependencies

For English text-to-speech functionality, the system depends on the NAOqi framework’s speech capa-
bilities, which are accessed via the /speech topic.

3.3.3 Kinyarwanda TTS Dependencies

The Kinyarwanda functionality requires more extensive dependencies. The system needs the TTS
library Synthesizer class and several pre-trained TTS model files. These include model.pth
(main model), config.json model configuration, speakers.pth speaker information,
SE checkpoint.pth.tar speaker encoder checkpoint, config se.json speaker encoder con-
figuration, and conditioning audio.wav reference audio for voice characteristics [2]. Addi-
tionally, it requires SSH/SCP access to the robot via sshpass and the NAOqi ALAudioPlayer.

Date: 25/04/2025
Version: No 1.2

Page 10

D5.5.2.4 Integrated Text to Speech
Conversion

3.4 Execution Workflow

The execution follows a defined workflow beginning with Node Initialization. During this phase, the
system initializes the ROS node (textToSpeech), reads configuration from
textToSpeechConfiguration.ini, and sets up appropriate resources based on the selected
language. For English, it creates a publisher to the /speech topic, while for Kinyarwanda, it initial-
izes the TTS Synthesizer with model files. The system then sets up the ROS service
(/textToSpeech/say text).

Next in the workflow is Service Request Handling. The system receives text input through service
calls and logs the request information.

The third phase involves Language-specific Processing. For English, the system publishes the text
to the /speech topic. For Kinyarwanda, it generates speech using the TTS Synthesizer, saves it to a
temporary WAV file, and calls the Python 2 script to transfer and play the audio.

The final phase is Audio Playback. For English, this is handled by the NAOqi framework. For Kin-
yarwanda, the system transfers the file to the robot, plays it using ALAudioPlayer, and then removes
the temporary file.

3.5 System Requirements

The system has several requirements for proper operation. It requires a ROS workspace with NAOqi
driver installed, a Python 3.9 environment for the main node, and a Python 2 environment for NAOqi
compatibility. SSH access to the robot with password authentication is necessary, as are pre-trained
TTS models for Kinyarwanda. The system also requires network connectivity to the robot.

3.6 Limitations and Assumptions

There are several limitations and assumptions in the current implementation. The system assumes the
NAOqi driver is properly configured and running. For Kinyarwanda TTS, SSH access to the robot with
the password ”nao” is required. The robot must have sufficient disk space for temporary audio files.
Audio quality may differ between the two languages due to different synthesis methods. Currently,
the system supports only two languages: English and Kinyarwanda.

Date: 25/04/2025
Version: No 1.2

Page 11

D5.5.2.4 Integrated Text to Speech
Conversion

4 Interface Design

4.1 Directory Structure

The integrated TTS module follows this directory structure:

cssr4africa/
cssr system/

text to speech/
config/

textToSpeechConfiguration.ini
launch/
model files/

model.pth
config.json
speakers.pth
SE checkpoint.pth.tar
config se.json
conditioning audio.wav
conditioning audio2.wav
README.md

src/
send and play audio.py
textToSpeech.py

srv/
TTS.srv

README.md
CMakeLists.txt
package.xml

unit test/
...

4.2 ROS Service Definitions

The system provides two primary ROS service interfaces:

4.2.1 Text-to-Speech Service

The main text-to-speech service allows for requesting speech synthesis with explicit language speci-
fication:

Date: 25/04/2025
Version: No 1.2

Page 12

D5.5.2.4 Integrated Text to Speech
Conversion

TTS.srv
string message # Input text to synthesize
string language # Language model to utilize

bool success # Operation status

This service is called as:

rosservice call /textToSpeech/say_text "message: ’Hello world’ language:
’english’"

4.3 ROS Topic Interface

For English TTS, the system publishes to the following topic:

Topic: /speech
Type: std_msgs/String

The NAOqi driver listens to this topic and uses its built-in TTS capabilities to produce speech.

4.4 Configuration Interface

The system uses a simple INI-style configuration file with the following structure:

[DEFAULT]
verboseMode = False
ip = 172.29.111.230
port = 9559

The configuration is loaded at startup and affects the behavior of the system throughout its oper-
ation. Note that language selection is no longer handled through this configuration file but is instead
managed through the ROS service interface and the culturalLanguageBase node.

4.5 External Script Interface

For Kinyarwanda TTS, a Python 2 script is called with the following arguments:

python2 send_and_play_audio.py <audio_file_path> <robot_ip> <robot_port>

This script transfers the audio file to the robot, plays it, and then removes the file.

4.6 Error Handling

The system provides error handling for the following scenarios:

1. Service Request Errors: Errors during processing are logged, but the service continues to
operate.

2. Language Selection Errors: If an unsupported language is requested, an error is logged and
the current language is maintained.

3. Synthesizer Initialization Errors: If the TTS Synthesizer cannot be initialized, an error is
logged and the system falls back to alternative methods where possible.

Date: 25/04/2025
Version: No 1.2

Page 13

D5.5.2.4 Integrated Text to Speech
Conversion

5 Module Design

5.1 Overall Architecture

The integrated Text-to-Speech system provides a flexible architecture that supports both English and
Kinyarwanda languages through a unified ROS service interface. The system consists of the following
main components:

1. ROS Node: textToSpeech Provides the service interface through /textToSpeech/say text

2. Language Handlers:

• English Handler: Publishes to the /speech topic

• Kinyarwanda Handler: Uses TTS Synthesizer and external Python2 script for audio
playback

3. External Components:

• TTS Synthesizer: Generates Kinyarwanda speech using pre-trained models

• Audio Transfer & Playback Script: Python2 script that handles file transfer and play-
back on the robot

5.2 Language Management

During initialization, the TTS node loads all available language models to ensure they are ready for
use. The actual language selection is managed by the BehaviorController, which invokes the language
selection service to set the appropriate language based on information from the culturalLanguageBase
node. This approach allows for dynamic language switching during operation without restarting the
node. The system interacts with the culturalLanguageBase node, which provides cultural context
information including the preferred language for communication. The BehaviorController subscribes
to updates from the culturalLanguageBase and invokes the language selection service as needed.

5.3 Configuration Management

The system loads configuration from an INI file during initialization:

def read_config():
try:

configParser = ConfigParser()
config_file = os.path.join(root_dir,

"text_to_speech/config/textToSpeechConfiguration.ini")
configParser.read(config_file)
config[’language’] = configParser[’DEFAULT’][’language’].lower()
config[’verboseMode’] = configParser[’DEFAULT’][’verboseMode’] == "True"
config[’ip’] = configParser[’DEFAULT’][’ip’]
config[’port’] = configParser[’DEFAULT’][’port’]

except:
rospy.logwarn("Unable to read configuration file. Going with default

values")

Date: 25/04/2025
Version: No 1.2

Page 14

D5.5.2.4 Integrated Text to Speech
Conversion

The default configuration values are:

config = {
’language’:’english’,
’verboseMode’:False,
’ip’:"172.29.111.240",
’port’:’9559’

}

5.4 Module Initialization

During initialization, the TTS node loads all necessary resources for both languages:

if __name__ == ’__main__’:
read_config()
try:

from TTS.utils.synthesizer import Synthesizer
synthesizer = Synthesizer(f"{model_files_dir}/model.pth",

f"{model_files_dir}/config.json",
tts_speakers_file=
f"{model_files_dir}/speakers.pth",
encoder_checkpoint=
f"{model_files_dir}/
SE_checkpoint.pth.tar",
encoder_config=
f"{model_files_dir}/config_se.json",
use_cuda=False
)

pub = rospy.Publisher(’/speech’,String,queue_size=100)
except:

rospy.ERROR("Unable to load synthesizer for ’Kinyarwanda")
exit(1)

text_to_speech()

5.5 English TTS Implementation

For English TTS, the system uses a simple ROS publisher to send text to the /speech topic:

if language == ’english’:
rospy.loginfo(f"Saying ’{message}’ in {language}")
pub.publish(message)

Date: 25/04/2025
Version: No 1.2

Page 15

D5.5.2.4 Integrated Text to Speech
Conversion

5.6 Kinyarwanda TTS Implementation

For Kinyarwanda TTS, the system uses the TTS Synthesizer:

elif language == ’kinyarwanda’:
rospy.loginfo(f"Saying ’{message}’ in {language}")
wav = synthesizer.tts(message,

speaker_wav=f"{model_files_dir}/conditioning_audio.wav")

with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as fp:
synthesizer.save_wav(wav, fp)

subprocess.run([python2_path, python2_script, fp.name, config[’ip’],
config[’port’]])

5.7 Service Handler Implementation

The TTS service handler processes incoming text-to-speech requests with language specification:

def say_text(request):
message = request.message
language = request.language.lower()
if language not in supported_languages:

rospy.logerr(f"Unsupported language: {language}")
return TTSResponse(success=False)

if language == ’english’:
rospy.loginfo(f"Saying ’{message}’ in {language}")
pub.publish(message)

elif language == ’kinyarwanda’:
rospy.loginfo(f"Saying ’{message}’ in {language}")
wav = synthesizer.tts(message,

speaker_wav=f"{model_files_dir}/conditioning_audio.wav")

with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as fp:
synthesizer.save_wav(wav, fp)

subprocess.run([python2_path, python2_script, fp.name, config[’ip’],
config[’port’]])

return TTSResponse(success=True)

5.8 Paths and Configuration

The system uses ROS package utilities to locate necessary files:

rospack = rospkg.RosPack()
root_dir = rospack.get_path(’cssr_system’)
model_files_dir = os.path.join(root_dir, "text_to_speech/model_files")
python2_path = ’/usr/bin/python2’
python2_script = os.path.join(root_dir,

"text_to_speech/src/send_and_play_audio.py")
supported_languages = [’english’, ’kinyarwanda’]

Date: 25/04/2025
Version: No 1.2

Page 16

D5.5.2.4 Integrated Text to Speech
Conversion

6 User Manual

For Python 3.9
pip install rospkg TTS

For Python 2
pip2 install pynaoqi

System dependencies
sudo apt-get install sshpass

cd tts_combined
catkin_make

roslaunch naoqi_driver naoqi_driver.launch nao_ip:=172.29.111.230
network_interface:=wlp0s20f3

cd workspace/pepper_rob_ws
source devel/setup.bash
rosrun cssr_system textToSpeech.py

cd tts_combined
source devel/setup.bash
rosservice call /textToSpeech/say_text "message: ’muraho, murakaza neza, muri,

robotics lab. ’"

rosservice call /textToSpeech/say_text "message: ’Hello, welcome to robotics
lab.’"

nano src/text_to_speech/config/textToSpeechConfiguration.ini

[DEFAULT]
language = english # Change to "kinyarwanda" for Kinyarwanda
verboseMode = False
ip = 172.29.111.230
port = 9559

Press Ctrl+C in Terminal 2 to stop the node
Then restart it:
rosrun text_to_speech textToSpeech.py

6.1 Common Issues

6.1.1 NAOqi Driver Connection Failure

Check that the robot IP is correct Ensure the network interface is correctly specified Verify that the
robot is powered on and connected to the network

Date: 25/04/2025
Version: No 1.2

Page 17

D5.5.2.4 Integrated Text to Speech
Conversion

7 Unit Testing

This report documents the testing of the integrated Text-to-Speech (TTS) system developed for the
Pepper robot with support for both English and Kinyarwanda languages. The system was tested using
the Robot Operating System (ROS) testing framework, with all tests executed successfully.

The integrated TTS system provides language-specific speech synthesis capabilities for the Pepper
robot. Key features include: Native English TTS using the robot’s built-in capabilities. Custom
Kinyarwanda TTS using language-specific processing. Dynamic language switching based on input
parameters. ROS service interface for integration with other robot systems.

7.1 Test Results: Audio Playback

˜/workspace/pepper_rob_ws$ rosrun unit_test
integrated_tts_test_audio_playback.py

[Testcase: test_audio_file_exists] ... ok
[Testcase: test_script_execution] ... ok
[Testcase: test_script_existence] ... ok

SUMMARY:

* RESULT:

* TESTS: 3

* ERRORS: 0 []

* FAILURES: 0 []

7.2 Test Results: TTS Service

˜/workspace/pepper_rob_ws$ rosrun unit_test integrated_tts_test_service.py

[Testcase: test_empty_message] ... ok
[Testcase: test_english_tts] ... ok
[Testcase: test_kinyarwanda_tts] ... ok
[Testcase: test_unsupported_language] ... ok

SUMMARY:

* RESULT:

* TESTS: 4

* ERRORS: 0 []

* FAILURES: 0 []

Test Results: TTS Integration Full Test

˜/workspace/pepper_rob_ws$ rosrun unit_test integrated_tts_full_test.py

===
TTS INTEGRATION TEST
===
This test will send various text messages to the TTS service in both English

and Kinyarwanda.
The test will check if the robot correctly speaks all test messages.

Date: 25/04/2025
Version: No 1.2

Page 18

D5.5.2.4 Integrated Text to Speech
Conversion

Make sure the TTS service is running before proceeding.
Press Enter to begin testing...
Waiting for TTS service...
TTS service found!

===
TEST 1: English TTS to Robot Integration
===
Sending text: ’This is an English integration test. The robot should say this

message.’
English message sent successfully
Waiting for 3.599999999999996 seconds for speech to complete...
Did you hear the English message correctly? (y/n): y
English first message test passed!
Sending text: ’This is a second English test message. Please confirm if you

hear this clearly.’
English message sent successfully
Waiting for 4.2 seconds for speech to complete...
Did you hear the second English message clearly? (y/n): y
English second message test passed!

===
TEST 2: Kinyarwanda TTS to Robot Integration
===
Sending text: ’Muraho, ubu ni ubutumwa bwo kugenzura. Roboti igomba kuvuga ubu

butumwa.’
{\color{terminalgreen}Kinyarwanda message sent successfully}
Waiting for 5.5 seconds for speech to complete...
Did you hear the Kinyarwanda message correctly? (y/n): y
Kinyarwanda message test passed!

===
TEST 3: Language Switching Capability
===
Sending English text: ’This is a test in English.’
Waiting for audio to play...
Sending Kinyarwanda text: ’Iri ni itsuzuma mu Kinyarwanda.’
Waiting for audio to play...
Sending English text: ’Now back to English.’
Waiting for audio to play...
Did all three messages play in the correct languages? (y/n): y
Language switching test passed!

===
TEST SUMMARY
===
Test 1: English TTS to Robot Integration - PASSED
Test 2: Kinyarwanda TTS to Robot Integration - PASSED
Test 3: Language Switching Capability - PASSED

All tests PASSED! The TTS is working correctly.

Date: 25/04/2025
Version: No 1.2

Page 19

D5.5.2.4 Integrated Text to Speech
Conversion

References

[1] Edresson Casanova, Julian Weber, Christopher Shulby, Arnaldo Candido Junior, Eren Gölge,
and Moacir Antonelli Ponti. Yourtts: Towards zero-shot multi-speaker tts and zero-shot voice
conversion for everyone. Proceedings of the 39th International Conference on Machine Learning,
pages 2709–2720, 2022.

[2] Jaehyeon Kim, Jungil Kong, and Juhee Son. Conditional variational autoencoder with adversar-
ial learning for end-to-end text-to-speech. Proceedings of the 38th International Conference on
Machine Learning, pages 5530–5542, 2021.

Date: 25/04/2025
Version: No 1.2

Page 20

D5.5.2.4 Integrated Text to Speech
Conversion

Principal Contributors

The main authors of this deliverable are as follows (in alphabetical order).

David Vernon, Carnegie Mellon University Africa.
Richard Muhirwa, Carnegie Mellon University Africa.
Tsegazeab Tefferi, Carnegie Mellon University Africa

Date: 25/04/2025
Version: No 1.2

Page 21

D5.5.2.4 Integrated Text to Speech
Conversion

Document History

Version 1.0
First draft.
Richard Muhirwa.
24 March 2025.

Version 1.1
Updated the section 4 Interface Design subsection Directory structure. Added parent folder
cssr4africa and cssr system and I include the internal README.md file.
Richard Muhirwa.
17 April 2025.

Version 1.2
I updated the unit testing section by adding more tests including test audio playback and test
TTS service.
Richard Muhirwa.
25 April 2025.

Date: 25/04/2025
Version: No 1.2

Page 22

	Introduction
	Requirements Definition
	Overview
	Functional Specification
	Text Processing and Speech Synthesis
	Configuration Management
	Inputs and Outputs
	Service Provided
	Topics Published (English Mode)

	External Dependencies and Integration
	Error Handling and Logging

	Function specification
	Functional Characteristics
	Text-to-Speech Conversion
	Operation Modes
	Audio File Generation and Playback
	ROS Integration

	Inputs and Outputs
	Inputs
	Outputs

	Dependencies
	Common Dependencies
	English TTS Dependencies
	Kinyarwanda TTS Dependencies

	Execution Workflow
	System Requirements
	Limitations and Assumptions

	Interface Design
	Directory Structure
	ROS Service Definitions
	Text-to-Speech Service

	ROS Topic Interface
	Configuration Interface
	External Script Interface
	Error Handling

	Module Design
	Overall Architecture
	Language Management
	Configuration Management
	Module Initialization
	English TTS Implementation
	Kinyarwanda TTS Implementation
	Service Handler Implementation
	Paths and Configuration

	User Manual
	Common Issues
	NAOqi Driver Connection Failure

	Unit Testing
	Test Results: Audio Playback
	Test Results: TTS Service

	References
	Principal Contributors
	Document History

