
Culturally Sensitive Social Robotics
for Africa

D5.5.2.3 Kinyarwanda Text to Speech Conversion

Due date: 26/02/2025
Submission Date: 02/03/2025

Revision Date: n/a

Start date of project: 01/07/2023 Duration: 36 months

Lead organisation for this deliverable:

Responsible Person: Richard Muhirwa Revision: 1.0

Project funded by the African Engineering and Technology Network (Afretec)
Inclusive Digital Transformation Research Grant Programme

Dissemination Level
PU Public PU
PP Restricted to other programme participants (including Afretec Administration)
RE Restricted to a group specified by the consortium (including Afretec Administration)
CO Confidential, only for members of the consortium (including Afretec Administration)

D5.5.2.3 Kinyarwanda Text to Speech
Conversion

Executive Summary

Deliverable D5.5.2.3 concerns the results of Task 5.5.2.3, a task whose objective was to train, test, and
deploy a text-to-speech (TTS) model for the Kinyarwanda language. This model aims to synthesize
natural-sounding speech from text inputs, enabling the generation of audio output.

This report details the output of each phase of the software development process used in the ful-
fillment of Deliverable D5.5.2.3. The requirements definition section specifies the functional re-
quirements of KinyarwandaTTS, outlining its role in delivering accurate and natural speech synthesis
for Kinyarwanda-speaking users. The module specification section describes the core functionality
of the TTS model, including its linguistic alignment and phonetic optimization for the Kinyarwanda
language. The interface design section outlines the inputs and outputs of the TTS system, detailing
how text inputs are converted into audio streams. The module design section delves into the architec-
ture of the deep learning models employed, focusing on their ability to capture phonetic and prosodic
features unique to Kinyarwanda. The testing section showcases the results and descriptions of unit
and end-to-end tests conducted to evaluate the accuracy, intelligibility, and naturalness of the synthe-
sized speech. Lastly, the user manual section provides step-by-step instructions on how to deploy
and utilize the KinyarwandaTTS model.

Date: 02/03/2025
Version: No 1.0

Page 2

D5.5.2.3 Kinyarwanda Text to Speech
Conversion

Contents

1 Introduction 5

2 Requirements Definition 6

3 Module Specification 7
3.1 Functional Characteristics . 7

3.1.1 Text-to-Speech Conversion . 7
3.1.2 Audio File Generation . 7
3.1.3 Audio Playback on Remote Robot . 7
3.1.4 ROS Integration . 7

3.2 Inputs and Outputs . 7
3.2.1 Inputs . 7
3.2.2 Outputs . 7

3.3 Dependencies . 8
3.3.1 Python Dependencies . 8
3.3.2 NAOqi Framework . 8
3.3.3 External Files . 8

3.4 Configuration . 8
3.5 Execution Workflow . 8

3.5.1 Node Initialization . 8
3.5.2 Text Reception . 8
3.5.3 Speech Synthesis . 9
3.5.4 Audio Playback . 9

3.6 System Requirements . 9
3.7 Limitations and Assumptions . 9

4 Interface Design 10
4.1 Directory Structure . 10

5 Module Design 12
5.1 Input Text Preprocessing Module . 12
5.2 Linguistic Analysis and Phoneme Mapping Module 12
5.3 Prosody and Speaker Embedding Module . 13
5.4 Speech Synthesis Module . 13
5.5 Output Audio Management Module . 16

6 User Manual 17
6.1 Setting Up and Running KinyarwandaTTS . 17

6.1.1 Environment Setup . 17
6.1.2 Launching the NAOqi Driver . 17
6.1.3 Running the KinyarwandaTTS Node . 17
6.1.4 Testing the System . 18
6.1.5 Troubleshooting . 18

Date: 02/03/2025
Version: No 1.0

Page 3

D5.5.2.3 Kinyarwanda Text to Speech
Conversion

7 Kinyarwanda TTS Unit Tests 19
7.0.1 Overview . 19
7.0.2 Requirements . 19

7.1 Testing Environments . 19
7.1.1 Physical Robot Testing . 19
7.1.2 Test Harness Testing . 20

7.2 Configuration Validation . 20

References 21

Principal Contributors 22

Document History 23

Date: 02/03/2025
Version: No 1.0

Page 4

D5.5.2.3 Kinyarwanda Text to Speech
Conversion

1 Introduction

Text-to-Speech (TTS) systems play a crucial role in enabling natural and effective communication
between humans and machines. A TTS system converts written text into spoken speech, serving as
the final step in many conversational and assistive technologies.

Text Input TTS Processor Audio Output

Figure 1: Basic workflow of a Text-to-Speech system, showing the conversion path from input text
through processing to audio output.

A TTS system typically consists of several components: text preprocessing, linguistic analysis,
prosody generation, and speech synthesis as illustrated in Figure 1. Text preprocessing involves clean-
ing and normalizing text inputs, linguistic analysis maps the text to phonetic representations, prosody
generation determines the rhythm and intonation of the speech, and speech synthesis produces au-
dio output that conveys the desired naturalness. Together, these components enable TTS systems to
generate speech that is both accurate and contextually appropriate.

The KinyarwandaTTS module developed in this deliverable focuses exclusively on the text-to-
speech component. It is designed to synthesize speech in Kinyarwanda. The model receives text
inputs, processes them to capture linguistic and phonetic nuances unique to Kinyarwanda, and pro-
duces natural-sounding audio outputs.

This development is part of a broader initiative to create culturally sensitive social robotics ap-
plications for African contexts, where the ability to communicate in local languages is essential for
acceptance and effectiveness. By enabling robots to speak Kinyarwanda naturally, we aim to make
human-robot interaction more intuitive and accessible for Kinyarwanda speakers, supporting applica-
tions in education, healthcare, customer service, and other domains where voice interaction is valu-
able.

Date: 02/03/2025
Version: No 1.0

Page 5

D5.5.2.3 Kinyarwanda Text to Speech
Conversion

2 Requirements Definition

A running KinyarwandaTTS system performs one main function—converting Kinyarwanda text
input into natural-sounding speech. The system receives text inputs, processes the text to account for
Kinyarwanda-specific linguistic and phonetic rules, and generates corresponding audio outputs that
capture the rhythm, intonation, and natural flow of the language.

In order to feasibly perform this function, the following functional requirements need to be fulfilled
by KinyarwandaTTS:

1. Input Text Parsing and Preprocessing - Receive Kinyarwanda text input in UTF-8 format
through an accessible interface (e.g., file input, or command-line argument). - Normalize the
text by removing unnecessary symbols, handling punctuation, and resolving abbreviations to
ensure proper pronunciation.

2. Phonetic and Linguistic Analysis - Map the normalized text to phonetic representations tai-
lored to Kinyarwanda’s unique linguistic structure. - Generate prosody features, such as pitch,
duration, and stress patterns, to mimic the natural intonation and rhythm of spoken Kinyarwanda.

3. Speech Synthesis - Use a trained deep learning-based TTS model to synthesize high-quality
audio output from the processed text and prosody features. - Ensure the audio output is natural-
sounding, with minimal artifacts.

4. Output Speech Generation - Generate and deliver the synthesized speech as an audio file in
standard formats (e.g., WAV, MP3). - Provide the option to output the audio stream directly for
real-time playback.

5. Configuration Options - Allow users to configure parameters such as speech speed, pitch
variation, and output file format through a configuration file options.

Date: 02/03/2025
Version: No 1.0

Page 6

D5.5.2.3 Kinyarwanda Text to Speech
Conversion

3 Module Specification

The KinyarwandaTTS module is responsible for converting text messages into synthesized speech in
the Kinyarwanda language and playing the generated audio on a remote robot, such as Pepper. The
module is implemented as a ROS node that interacts with other ROS topics and external systems.
Below are the detailed specifications of the module:

3.1 Functional Characteristics

3.1.1 Text-to-Speech Conversion

• The core functionality of the module is to synthesize Kinyarwanda speech from text received
on the /text to say ROS topic.

• The Coqui TTS is a free text-to-speech (TTS) library that uses deep learning to convert text to
audio. Coqui TTS model is used for generating speech, with pre-trained models and configura-
tion files specified during initialization.

3.1.2 Audio File Generation

The synthesized speech is saved as a temporary .wav audio file for playback. The temporary file is
created using Python’s tempfile library and deleted automatically after playback.

3.1.3 Audio Playback on Remote Robot

The module uses the send and play audio.py script to transmit the audio file to the robot and
play it. Secure transfer of the audio file is achieved using sshpass and scp. Playback is managed
by the NAOqi framework via the ALAudioPlayer proxy on the robot.

3.1.4 ROS Integration

The ROS node subscribes to the /text to say topic of type std msgs/String, receiving text
messages to convert to speech. It can be launched using the rosrun command from a properly set-up
ROS workspace.

3.2 Inputs and Outputs

3.2.1 Inputs

• ROS Topic: /text to say

– Type: std msgs/String

– Description: Accepts a text string in Kinyarwanda to be converted into speech.

3.2.2 Outputs

• Audio File: A temporary .wav file generated during runtime and used for playback.

• Remote Playback: The synthesized speech is played back on the robot via the NAOqi frame-
work.

Date: 02/03/2025
Version: No 1.0

Page 7

D5.5.2.3 Kinyarwanda Text to Speech
Conversion

3.3 Dependencies

3.3.1 Python Dependencies

• rospy (ROS integration)

• std msgs (ROS message types)

• tempfile (temporary file handling)

• subprocess (external process execution)

• os (file system operations)

• Coqui TTS (TTS.utils.synthesizer.Synthesizer)

3.3.2 NAOqi Framework

• ALProxy (audio playback proxy)

• Secure communication and file transfer using sshpass and scp.

3.3.3 External Files

• Model files for TTS, including .pth and .json configurations, located in /home/muhirwa/tts ws/src/kinyarwanda tts/model files/.

• send and play audio.py script for transferring and playing the audio on the robot.

3.4 Configuration

The module requires the following configurations for proper operation:

• TTS Model Paths: Paths to pre-trained TTS model files (model.pth, config.json, etc.).

• Python Version: The primary ROS node runs on Python 3.9, while the playback script uses
Python 2.

• Robot Connection:

– Robot’s IP address: 172.29.111.230.

– Robot’s username: nao.

– Robot’s password: nao.

3.5 Execution Workflow

3.5.1 Node Initialization

The ROS node kinyarwandaTTS initializes and sets up the Coqui TTS synthesizer. The /text to say
topic subscriber is registered.

3.5.2 Text Reception

The node receives text input via the /text to say topic.

Date: 02/03/2025
Version: No 1.0

Page 8

D5.5.2.3 Kinyarwanda Text to Speech
Conversion

3.5.3 Speech Synthesis

The received text is processed and converted into a .wav audio file using the TTS model.

3.5.4 Audio Playback

The generated audio file is securely transferred to the robot. The playback script (send and play audio.py)
executes the file on the robot and deletes it after playback.

3.6 System Requirements

• ROS workspace configured with the NAOqi drivers.

• Coqui TTS model and required dependencies installed.

• Python 3.9 for the ROS node and Python 2 for the playback script.

• SSH connection between the local system and the robot.

3.7 Limitations and Assumptions

The current implementation assumes that the robot (e.g., Pepper) is accessible over SSH and correctly
configured with NAOqi drivers. The playback script must be compatible with the target robot’s op-
erating environment. Temporary .wav files must be generated and deleted properly to avoid storage
issues.

Date: 02/03/2025
Version: No 1.0

Page 9

D5.5.2.3 Kinyarwanda Text to Speech
Conversion

4 Interface Design

4.1 Directory Structure

The directory structure of the kinyarwanda tts module is as follows:

kinyarwanda tts/
launch/

kinyarwanda tts.launch
model files/

model.pth
config.json
speakers.pth
SE checkpoint.pth.tar
config se.json
conditioning audio.wav

scripts/
init .py

send and play audio.py
src/

tts node.py
tests/

init .py
test tts node.py

README.md
package.xml
CMakeLists.txt
requirements.txt

Explanation of File and Folder Structure

1. launch/

• Contains the launch file for starting the KinyarwandaTTS ROS node.

2. model files/

• Stores the TTS model files and configurations:

– model.pth: Pre-trained Coqui TTS model.
– config.json: Configuration file for the TTS model.
– speakers.pth: Speaker embeddings for voice customization.
– SE checkpoint.pth.tar: Speaker encoder checkpoint file.
– config se.json: Configuration file for the speaker encoder.
– conditioning audio.wav: Audio file for conditioning the model.

Date: 02/03/2025
Version: No 1.0

Page 10

D5.5.2.3 Kinyarwanda Text to Speech
Conversion

3. scripts/

• Contains additional scripts used by the node:

– send and play audio.py: Python 2 script to transfer and play audio on the
robot.

– init .py: Marks the directory as a Python module.

4. src/

• Contains the main source code for the KinyarwandaTTS ROS node:

– tts node.py: Core Python script implementing the node functionality.

5. tests/

• Contains unit tests and integration tests for the node:

– test tts node.py: Test suite for validating the TTS functionality.
– init .py: Marks the directory as a Python module.

6. Root Files

• README.md: Documentation file with instructions on setup and usage.

• package.xml: ROS package metadata.

• CMakeLists.txt: Build configuration for the ROS package.

• requirements.txt: Python dependencies required for the node.

Date: 02/03/2025
Version: No 1.0

Page 11

D5.5.2.3 Kinyarwanda Text to Speech
Conversion

5 Module Design

The module design of the KinyarwandaTTS system is focused on the core functionalities and architec-
tural components required to perform text-to-speech synthesis for the Kinyarwanda language. Below
are the five key module designs:

5.1 Input Text Preprocessing Module

This module handles the preprocessing of raw text input to ensure compatibility with the TTS model.

Responsibilities:

• Normalize input text by removing unnecessary symbols, resolving abbreviations, and handling
special characters.

• Tokenize sentences into manageable chunks to avoid buffer overflows during synthesis.

• Convert punctuation into prosodic features for accurate rhythm and intonation.

5.2 Linguistic Analysis and Phoneme Mapping Module

This module is responsible for converting normalized text into phonetic representations that guide the
speech synthesis process.

Responsibilities:

• Perform linguistic analysis to identify syllables and word stress.

• Map text to phonemes using a predefined Kinyarwanda phoneme dictionary.

• Add contextual information like pauses and pitch markers.

Key Features:

• Integration with a phoneme dictionary tailored for Kinyarwanda.

• Prosodic annotation for natural intonation.

Date: 02/03/2025
Version: No 1.0

Page 12

D5.5.2.3 Kinyarwanda Text to Speech
Conversion

5.3 Prosody and Speaker Embedding Module

This module generates prosody features and applies speaker embeddings to produce natural and con-
textually appropriate speech.

Responsibilities:

• Generate rhythm, stress, and intonation patterns for the synthesized speech.

• Apply speaker embeddings for voice customization, enabling a variety of voices.

Key Features:

• Prosody models trained specifically on Kinyarwanda language data.

• Compatibility with conditioning audio files for fine-tuning speech characteristics.

5.4 Speech Synthesis Module

This is the core module where the actual speech synthesis takes place using a deep learning-based
TTS model.

Responsibilities:

• Convert phonetic and prosodic representations into audio waveforms.

• Use a neural vocoder to generate high-quality audio outputs.

Key Features:

• Utilizes pre-trained Coqui TTS model optimized for Kinyarwanda.

• Supports GPU acceleration for faster synthesis (optional).

Inputs:

• Phonetic and prosodic data from the previous modules.

Outputs:

• Raw audio waveform in .wav format.

See Figure 2 and Figure 3 for training and inference procedures.

Date: 02/03/2025
Version: No 1.0

Page 13

D5.5.2.3 Kinyarwanda Text to Speech
Conversion

Linear Spec.

(++)

Char
Embedding

Language
Embedding

Lang IDInput Text Noise Ref. Wav

Transform-Based Encoder
[2pt]Transformers Block

Linear
Projection

Monotonic Alignment
Search

Image

Flow-Based Decoder f
Affine Coupling Layer

Posterior Encoder
WaveNet residual block

HiFi-GAN Generator

Stochastic
Duration
Predictor

Speaker
Embedding

Speaker
Encoder

z

z

zp

mp

d

Figure 2: Kinyarwanda TTS training procedure showing the data flow between text encoder, flow-
based decoder, and audio generation components. [1]

Date: 02/03/2025
Version: No 1.0

Page 14

D5.5.2.3 Kinyarwanda Text to Speech
Conversion

(++)

Char
Embedding

Language
Embedding

Lang IDInput Text Noise Ref. Wav

Transform-Based Encoder
Transformers Block

Linear
Projection

Monotonic Alignment
Search

Image

Flow-Based Decoder f
Affine Coupling Layer

HiFi-GAN Generator

Ceil

Stochastic
Duration
Predictor

Speaker
Embedding

Speaker
Encoder

zp

mp

d

Figure 3: Kinyarwanda TTS inference procedure depicting how input text is processed and trans-
formed into speech output. [1]

Date: 02/03/2025
Version: No 1.0

Page 15

D5.5.2.3 Kinyarwanda Text to Speech
Conversion

5.5 Output Audio Management Module

This module handles the generated audio output, ensuring proper storage, playback, and streaming
capabilities.

Responsibilities:

• Save the synthesized audio to a specified file format (e.g., .wav, .mp3).

• Provide APIs for real-time audio playback or streaming.

• Perform post-processing, such as normalization and noise reduction.

Key Features:

• Integration with remote systems or robots for audio playback.

• Temporary file management for efficient resource utilization.

Date: 02/03/2025
Version: No 1.0

Page 16

D5.5.2.3 Kinyarwanda Text to Speech
Conversion

6 User Manual

6.1 Setting Up and Running KinyarwandaTTS

The KinyarwandaTTS system is implemented as a ROS node that integrates with NAOqi Framework
for robotic applications. Follow these steps to set up and run the system:

6.1.1 Environment Setup

1. Navigate to the root of your ROS workspace:

cd /your_ros_workspace

2. Compile the ROS packages:

catkin_make

3. Source the setup file to ensure the environment variables are properly configured:

source devel/setup.bash

6.1.2 Launching the NAOqi Driver

Before running the KinyarwandaTTS node, you must establish communication with the robot:

1. Launch the NAOqi driver, specifying the robot’s IP address and your network interface:

roslaunch naoqi_driver naoqi_driver.launch
nao_ip:=172.29.111.230 network_interface:=enp0s3

Note: Replace enp0s3 with your actual network interface name if different.

6.1.3 Running the KinyarwandaTTS Node

1. Open a new terminal tab or window

2. Source the setup file again in the new terminal:

source devel/setup.bash

3. Launch the KinyarwandaTTS node:

rosrun kinyarwanda_tts tts_node.py

Date: 02/03/2025
Version: No 1.0

Page 17

D5.5.2.3 Kinyarwanda Text to Speech
Conversion

6.1.4 Testing the System

To test the TTS functionality, open a third terminal and publish a text message to the /text to say
topic:

1. For a simple greeting in Kinyarwanda:

rostopic pub /text_to_say std_msgs/String "data: ’Mwiriwe neza.’"

6.1.5 Troubleshooting

• Ensure the robot is powered on and connected to the same network as your computer

• Verify that NAOqi services are running on the robot

• Check network connectivity with ping 172.29.111.230

• Review ROS logs for error messages: rosrun rqt console rqt console

Date: 02/03/2025
Version: No 1.0

Page 18

D5.5.2.3 Kinyarwanda Text to Speech
Conversion

7 Kinyarwanda TTS Unit Tests

This package contains unit tests for the Kinyarwanda Text-to-Speech (TTS) component for Pepper
robots.

7.0.1 Overview

The Kinyarwanda TTS component converts text in Kinyarwanda language to speech and plays it on
the Pepper robot. This package provides two testing environments:

1. Physical Robot Testing

2. Test Harness Testing

7.0.2 Requirements

ROS Noetic ubuntu 20.04, Python 3.9 (for the TTS node), Python 2.7 (for the Pepper robot interface),
Coqui TTS library, NAOqi SDK, and SSH access to the Pepper robot (for physical robot testing)

7.1 Testing Environments

7.1.1 Physical Robot Testing

The kinyarwanda tts launch robot.launch file connects the TTS component to the phys-
ical Pepper robot.

Data Source: Text messages published to the /text to say topic
Data Sink: Pepper robot’s speakers via NAOqi’s ALAudioPlayer
Expected Behavior:

• When text is published to the /text to say topic, the TTS component should:

1. Convert the text to speech using the Coqui TTS model

2. Save the audio to a temporary WAV file

3. Transfer the WAV file to the Pepper robot via SSH

4. Play the audio on the robot

5. Delete the temporary file after playback

Running the test:

roslaunch kinyarwanda_tts kinyarwanda_tts_launch_robot.launch

Date: 02/03/2025
Version: No 1.0

Page 19

D5.5.2.3 Kinyarwanda Text to Speech
Conversion

7.1.2 Test Harness Testing

The kinyarwanda tts launch test harness.launch file connects the TTS component to
mock input and output drivers.

Data Source: Predefined test text messages from a test data publisher
Data Sink: Mock NAOqi driver that validates audio files without actual playback
Expected Behavior:

• The test data publisher should send a series of test messages

• For each message, the TTS component should:

1. Convert the text to speech using the Coqui TTS model

2. Save the audio to a file in the test outputs directory

3. The audio validator should verify:

– Audio file is created successfully
– Audio duration is appropriate for the text length
– Audio file can be played successfully (without actually playing)

Running the test:

roslaunch kinyarwanda_tts kinyarwanda_tts_launch_test_harness.launch

7.2 Configuration Validation

Parameter Default Effect When Changed
model path /home/muhirwa/tts ws/

src/kinyarwanda tts/
model files/model.pth

Using a different model will change the
voice quality and pronunciation

speaker wav /home/muhirwa/tts ws/
src/kinyarwanda tts/
model files/
conditioning audio.wav

Using a different conditioning audio
will change the voice characteristics

use cuda false Setting to true will enable GPU accel-
eration, resulting in faster synthesis

robot ip 172.29.111.230 Changing this will connect to a differ-
ent robot

robot port 9559 Changing this may be necessary for
different robot configurations

temp dir /tmp Changing this affects where temporary
audio files are stored

Table 1: Configuration Parameters and Their Effects

To test configuration changes:

• Modify the parameters in kinyarwanda tts.ini

Date: 02/03/2025
Version: No 1.0

Page 20

D5.5.2.3 Kinyarwanda Text to Speech
Conversion

References

[1] Casanova, E., Weber, J., Shulby, C., Candido Junior, A., Golge, E., & Ponti, M. A. (2021).
YourTTS: Towards Zero-Shot Multi-Speaker TTS and Zero-Shot Voice Conversion for everyone.
arXiv preprint arXiv:2112.02418.

Date: 02/03/2025
Version: No 1.0

Page 21

D5.5.2.3 Kinyarwanda Text to Speech
Conversion

Principal Contributors

The main authors of this deliverable are as follows (in alphabetical order).

David Vernon, Carnegie Mellon University Africa.
Kleber Kabanda, Carnegie Mellon University Africa.
Richard Muhirwa, Carnegie Mellon University Africa.

Date: 02/03/2025
Version: No 1.0

Page 22

D5.5.2.3 Kinyarwanda Text to Speech
Conversion

Document History

Version 1.0
First draft.
Richard Muhirwa.
02 March 2025.

Date: 02/03/2025
Version: No 1.0

Page 23

	Introduction
	Requirements Definition
	Module Specification
	Functional Characteristics
	Text-to-Speech Conversion
	Audio File Generation
	Audio Playback on Remote Robot
	ROS Integration

	Inputs and Outputs
	Inputs
	Outputs

	Dependencies
	Python Dependencies
	NAOqi Framework
	External Files

	Configuration
	Execution Workflow
	Node Initialization
	Text Reception
	Speech Synthesis
	Audio Playback

	System Requirements
	Limitations and Assumptions

	Interface Design
	Directory Structure

	Module Design
	Input Text Preprocessing Module
	Linguistic Analysis and Phoneme Mapping Module
	Prosody and Speaker Embedding Module
	Speech Synthesis Module
	Output Audio Management Module

	User Manual
	Setting Up and Running KinyarwandaTTS
	Environment Setup
	Launching the NAOqi Driver
	Running the KinyarwandaTTS Node
	Testing the System
	Troubleshooting

	Kinyarwanda TTS Unit Tests
	Overview
	Requirements

	Testing Environments
	Physical Robot Testing
	Test Harness Testing

	Configuration Validation

	References
	Principal Contributors
	Document History

