
Culturally Sensitive Social Robotics
for Africa

D5.5.1.2 Programming by Demonstration

Due date: 9/12/2024
Submission Date: 9/12/2024
Revision Date: 31/01/2025

Start date of project: 01/07/2023 Duration: 36 months

Lead organisation for this deliverable: Carnegie Mellon University Africa

Responsible Person: Daniel Barros Revision: 1.3

Project funded by the African Engineering and Technology Network (Afretec)
Inclusive Digital Transformation Research Grant Programme

Dissemination Level
PU Public PU
PP Restricted to other programme participants (including Afretec Administration)
RE Restricted to a group specified by the consortium (including Afretec Administration)
CO Confidential, only for members of the consortium (including Afretec Administration)

D5.5.1.2 Programming by Demonstration

Executive Summary

Deliverable 5.5.1.2 documents the development and functionality of a ROS package — the Pepper-
Trace Programming by Demonstration Tool — designed to enable the Pepper robot to execute upper
body and hand gestures learned through Programming by Demonstration (PbD). This software mod-
ule is tailored for deployment on the real Pepper robot and is not intended for use in simulation.

The deliverable includes the following.

• The documented code for the programming by demonstration ROS package.

• A comprehensive report detailing the system architecture, component requirements, develop-
ment procedures, and an explicit definition of the module’s functional characteristics.

• Instructions for developers who wish to adapt the package for custom applications.

• A user manual to assist users in configuring and launching the module.

The package’s interface design covers input, output, and control data, while also specifying appropri-
ate data structures. All development activities adhere to the software engineering standards outlined
in Deliverable D3.2.

Date: 31/01/2025
Version: No 1.3

Page 2

D5.5.1.2 Programming by Demonstration

Contents

1 Introduction 4

2 Requirements Definition 5

3 Module Specification 7

4 Module Design 10
4.1 Design Overview . 10
4.2 Image Source . 10
4.3 Skeletal Model . 10
4.4 Demonstration Recorder . 11
4.5 Demonstration GUI . 12

5 Implementation 13
5.1 File Organization & Purpose . 13
5.2 Skeletal Model Implementation . 15
5.3 Demonstration Recorder Implementation . 19
5.4 Demonstration GUI Implementation . 22

6 Running the Programming by Demonstration System 25
6.1 Run as a whole . 25
6.2 Run components one by one . 25

7 Unit Tests 26

8 For Developers 31
8.1 Use another input device . 31
8.2 Demonstrate for another robot . 31
8.3 Record more data . 31
8.4 Change filter . 32

References 33

Principal Contributors 33

Appendix I: User Manual — PepperTrace Programming by Demonstration Tool 34

Document History 41

Date: 31/01/2025
Version: No 1.3

Page 3

D5.5.1.2 Programming by Demonstration

1 Introduction

This deliverable extends D5.5.1.1 Gesture Execution by introducing programming gestures by
demonstration. This technique enables the robot to learn iconic and symbolic gestures directly from
human demonstrators. Users interact with the system by performing gestures in front of an RGBD
camera. Human joint positions are estimated using a skeletal model and retargeted to Pepper’s joint
angles. Various filters can be applied to increase the smoothness of imitation of the demonstrated
movements.

The package includes a component for recording data from multiple Pepper sensors during the
demonstration process. Additionally, a graphical user interface is provided to facilitate the control
and management of demonstrations and data collection.

Section 2 specifies the requirements for the software module, covering functionality, performance,
and usability aspects. Section 3 outlines the functional characteristics of the module, focusing on the
retargeting of angles from the skeletal model to Pepper’s joints. Section 4 addresses the interface de-
sign, specifying the data inputs, outputs, and control mechanisms. It also describes how these data are
accessed or made available, whether through files or ROS mechanisms like subscribers, services, or
actions. Section 5 details the module design, including implementation specifics and the connections
between components. Section 6 provides instructions for running the PbD system. Section 7 docu-
ments the unit testing procedures for the module’s components, ensuring reliability and performance.
Finally, Section 8 offers guidance for developers on extending the software for custom applications.

Date: 31/01/2025
Version: No 1.3

Page 4

D5.5.1.2 Programming by Demonstration

Figure 1: Programming by Demonstration Setup: The human demonstrator gestures
in front of an RGBD camera and Pepper imitates the movements.

2 Requirements Definition

• Core Functionality:

– The software must enable the Pepper robot to imitate upper-body gestures performed by
humans in real-time (online) and from video (offline).

– Pepper should be able to imitate all gestures performed in the coronal plane and in front
of the body.

– If joint angles cannot be calculated, the controller must maintain its previously com-
manded joint positions.

• Data Processing and Filtering:

– A filtering function must smooth noisy angle estimations from the skeletal model, enhanc-
ing the naturalness of Pepper’s movements.

– Switching between different filtering options should be easy and intuitive for the user.

• Demonstration and Recording:

Date: 31/01/2025
Version: No 1.3

Page 5

D5.5.1.2 Programming by Demonstration

– The module must allow users to record demonstrations, storing data in an organized and
accessible format.

– Recorded trajectories must be easy to store and replay.

– It should be possible to record any type of data coming from Pepper’s sensors.

– The recording component must be expandable to support other user input modalities and
robots.

• User Interface:

– An intuitive user interface must be provided to facilitate control of the demonstration and
recording process.

– Users must have real-time access to system logs during the demonstration process to gain
operational insights.

Date: 31/01/2025
Version: No 1.3

Page 6

D5.5.1.2 Programming by Demonstration

3 Module Specification

The Programming by Demonstration module, also referred to as PepperTrace module, consists of three
components. The first one, skeletal model, addresses the first and second set of requirements
by enabling Pepper to imitate the upper body movements of a human demonstrator. The second
one, demonstration recorder, deals with the third set of requirements by implementing data
collection from the Pepper robot. Finally, the demonstration gui delivers an intuitive graphical
user interface. Figure 2 provides the functional graph as the system overview.

Figure 2: Functional graph of the PbD module: the Skeletal Model processes vi-
sual and depth images to generate joint commands for the robot; the
Demonstration Recorder logs these commands and data from the robot
sensors; the Demonstration GUI provides user control over all the other
components. The camera can be replaced by a pre-recorded video feed.

The main computation is carried out in the skeletal model component, as shown in Figure 3.
By retargeting human joint positions to humanoid joint angles, the Pepper robot is endowed with the
ability to imitate upper-body gestures performed by the human demonstrator. Occlusions of arm joints
are not handled, so only movements in the coronal plane and in front of the body are imitated. As
soon as one landmark on the human upper body is not detected in the frame, no new command will
be sent, and Pepper’s arm controllers will maintain the last commanded joint angles.

The input to this component is abstracted as visual and depth images, meaning the source incoming
frames can be either a live image feed or a prerecorded video stream. This component also includes
filtering of the retargeted joint angles to smooth noisy angle estimations from the skeletal model,
enhancing the naturalness of Pepper’s movements.

Date: 31/01/2025
Version: No 1.3

Page 7

D5.5.1.2 Programming by Demonstration

Figure 3: Computational graph of the PbD module: Synchronized visual and depth images from the
camera are used to estimate the skeletal model, i.e. the positions of the human joints. These
are then retargeted to the joint angles of the Pepper humanoid robot. A filter is applied to
the incoming joint angles to increase the naturalness of the movement in real-time and the
resulting joint commands are fed to the robot arm controllers.

The demonstration recorder component can be seen as the backend of the application. It
provides a robust recording function that saves data locally in a consistent, structured format. This
recorded data can be replayed by the robot, as illustrated in Figure 4 and Figure 5. The component
integrates with the GUI to handle user inputs and display system information, offering an intuitive
interface for users.

Designed with a modular approach, the demonstration recorder component can be cus-
tomized for various robot platforms and user input devices. While the default user interface is the
GUI provided by the demonstration gui component, developers have the flexibility to integrate
alternative or additional input methods (see Section 8.1 for details).

Figure 4: State machine graph of the PbD module: Barring internal errors that are displayed to the
user in the terminal and the GUI, binary user input determines the state of the system: every
active state has an entry and exit function that needs to be explicitly called. Exception is
“Stop Replay”, which can be stopped manually or stops automatically when the recorded
motion has been fully performed.

Date: 31/01/2025
Version: No 1.3

Page 8

D5.5.1.2 Programming by Demonstration

The GUI serves as the frontend for controlling the system’s functionality. It allows users to initiate
and manage recordings, configure the types of data to be recorded, and select filters to apply to the
retargeted joint angles. Additionally, the GUI displays real-time system logs, providing valuable
insights for troubleshooting and monitoring during operation. The user can manually clear the logs
box at any point.

Figure 5 illustrates an example workflow for recording and replaying demonstrations.

Figure 5: Behavioural graph of the PbD module: The user-centered graph shows an example proce-
dure for demonstrating, recording and replaying. Rectangular boxes represent observable
processes, diamond-shaped boxes stand for checks, non-rectangular boxes represent user
action. “Gesture Replay” is the termination element. The blue line indicates the available
option of recording multiple demonstrations in one session.

Date: 31/01/2025
Version: No 1.3

Page 9

D5.5.1.2 Programming by Demonstration

4 Module Design

4.1 Design Overview

The Programming by Demonstration module is implemented in the Python programming language
and is designed to process visual and depth images for programming robot gestures by demonstration.
Component-based robotic engineering [?] is employed using ROS Noetic as the middleware for
interprocess communication [?]. The module consists of three components: skeletal model,
demonstration recorder, and demonstration gui. Each component consists of a ROS
node. The terms component and node are used interchangeably throughout the following sections.
Same applies to the terms module and package.

4.2 Image Source

The source of the visual and depth images is the ROS driver of an Intel RealSense RGBD camera [?
] in the case of a live image feed or a custom driver in the case of video. The depth image is aligned
with the color image. Both drivers are single-component external modules, realsense2 camera
and video driver,included as dependencies. Both are implemented as a ROS node, which pub-
lishes visual and aligned depth images on two separate topics at a fixed, configurable frequency. This
approach stems from the implementation of the Intel RealSense ROS driver [?].

4.3 Skeletal Model

The core of the system, the skeletal model node, incorporates the following design choices:

• Incoming visual and depth images are synchronized, ensuring consistent processing

• Synchronized inputs are fed to the MediaPipe deep learning model for human joint pose esti-
mation in cartesian space(Figure 6)

• x and y coordinates are retrieved from MediaPipe and concatenated with the z coordinate from
the depth map to generate 3D landmarks.

• 3D landmarks are retargeted to Pepper’s joints using the GA-LVVJ algorithm [?].

• Calculated joint angles are filtered to improve the naturalness of movements. Butterworth and
biological motion filters are already implemented and it is possible, though not necessary, to
add more (see Section 8.4).

• Filtered joint angles are fed forward to Pepper’s arm joint controllers for execution. No feedback
control is implemented at this level.

Date: 31/01/2025
Version: No 1.3

Page 10

D5.5.1.2 Programming by Demonstration

Figure 6: Skeletal model of the human demonstrator is estimated using Google’s Me-
diaPipe pose estimation framework [?].

4.4 Demonstration Recorder

The demonstration recorder component comprises several interconnected subcomponents:

• Data Logger: Implements functions to start and stop recording time-series data of the robot’s
joint angles during demonstrations.

• Robot Event Handler: Manages robot control actions such as connecting to the robot, starting,
or stopping the demonstration process.

• User Input Handler: Processes inputs from the user interface to configure and control the
demonstration. The default user interface is the GUI included with this module, but it can be
replaced or extended with a user-defined interface for added flexibility (see Section 8.1).

• Information Display: Logs and displays system actions and events in real-time, providing
operational feedback. By default, messages are displayed in the GUI.

• Demo Recorder: Coordinates the overall process by managing user inputs and delegating han-
dling of incoming events to the Robot Event Handler or the Data Logger.

During operation, user commands are processed by the User Input Handler and shared as events with
the Demo Recorder. Depending on the type of event, the Demo Recorder forwards the commands to
either the Robot Event Handler or the Data Logger. The outcomes or responses from these subcom-
ponents are then published by the Information Display.

This modular design inspired by [?] ensures the system is robot-and input-device-agnostic,
allowing it to be adapted for use with any robotic platform and to record any type of data, making it
flexible for various applications.

Date: 31/01/2025
Version: No 1.3

Page 11

D5.5.1.2 Programming by Demonstration

4.5 Demonstration GUI

The GUI for the demonstration process (Figure 14 is implemented using the third-party library PyQt5.
Communication with the rest of the system is facilitated by a ROS node, which uses signals and slots
[?] to forward messages to the main Qt application and publish GUI commands to the PbD system.
The GUI contains the following elements:

• Entry fields to enter the robot IP and port to connect to the robot

• Buttons for capturing user commands (CONNECT, START/STOP DEMONSTRATE, START/STOP
RECORD, CLEAR).

• A log box to display real-time system logs.

• Radio buttons for choosing the filter type

• Check boxes to select the data to be recorded, respectively.

• Integration of the MediaPipe feed with the skeletal model, providing a visual representation of
the pose estimation process during demonstrations as shown in Figure 6.

Figure 7: Graphical User Interface for the Programming by Demonstration system

Date: 31/01/2025
Version: No 1.3

Page 12

D5.5.1.2 Programming by Demonstration

5 Implementation

5.1 File Organization & Purpose

The source code for programming by demonstration is structured into three components:
skeletal model, demonstration recorder and demonstration gui. Each of these
components operates as a ROS node, with distinct roles: retargeting estimated human joint positions
to Pepper’s joint angles, recording demonstration data, and providing a GUI as the user interface for
the PbD system. Each component contains the following elements:

• /config folder: contains configuration files in the JSON format. These files store parameters
and settings that can be adjusted to modify the behavior of the component without changing the
source code.

• /launch folder : includes ROS launch files that automate the startup process of ROS nodes and
set parameter values.

• /src folder: Source files are divided into one application and multiple implementation files.
The rationale behind the nomenclature is that the user of a node does not need to know the
implementation details to use it as an application. As a rule, each implementation file contains
one Python class, according to the name of the file. The inclusion of an init.py .py file
signals to Python that the directory should be treated as a package with importable scripts [?]

• CMakeLists.txt file: provides build instructions for the component using CMake, which is
integrated with ROS through the catkin build system [?].

• README.md file: offers documentation and usage instructions for the component.

The demonstration gui additionally contains an images folder, which can contain any
number of image files, typically in the *.png format. These images are displayed in the GUI as
logos or status identifiers.

Along with the component directories, the root directory of the module contains a package.xml
file, which includes meta-information about the ROS package, e.g the package name, version, de-
scription, maintainers, license, and dependencies on other ROS packages. It also contains the top
level CMakeLists.txt and README.md files for module-level build instructions and documentation,
respectively.

Date: 31/01/2025
Version: No 1.3

Page 13

D5.5.1.2 Programming by Demonstration

Figure 8 shows the file structure of the programming by demonstration package.

programming by demonstration

demonstration gui

config

demonstration gui configuration.json

images

*.png

launch

demonstration gui.launch

src

init .py

demonstration gui application.py

demonstration gui elements implementation.py

demonstration gui logic implementation.py

demonstration gui ros interface implementation.py

CMakeLists.txt

README.md

demonstration recorder

config

demonstration recorder configuration.json

launch

demonstration recorder.launch

src

init .py

demonstration recorder application.py

demonstration recorder data logger implementation.py

demonstration recorder demo recorder implementation.py

demonstration recorder information display implementation.py

demonstration recorder robot event handler implementation.py

demonstration recorder recorder ros utils.py

demonstration recorder rosbag recorder implementation.py

demonstration recorder states and events implementation.py

demonstration recorder user input handler implementation.py

CMakeLists.txt

README.md

skeletal model

config

skeletal model configuration.json

launch

skeletal model.launch

src

init .py

skeletal model application.py

skeletal model estimation implementation.py

skeletal model filters implementation.py

skeletal model retargeting implementation.py

CMakeLists.txt

README.md

CMakeLists.txt

package.xml

README.md

Figure 8: Directory structure of the PbD module consisting of three components each with config,
launch, src folders and CMakeLists.txt and README.md files. The root directory also
includes the package.xml file.

Date: 31/01/2025
Version: No 1.3

Page 14

D5.5.1.2 Programming by Demonstration

5.2 Skeletal Model Implementation

Python Classes

The skeletal model component is implemented with several classes that achieve the functionality
depicted in Figure 3. The class diagram is depicted in Figure 9.

• SkeletalModelEstimation - main implementation:

– uses synchronized ROS message filters subscribers to receive visual and depth im-
ages

– processes images in a callback: gets 3D landmarks in cartesian space in the camera frame
from MediaPipe and depth map, runs retargeting and filtering functions and publishes
the angles on a ROS topic. Numerical quantities like 3D landmarks and joint angles are
processed as Numpy arrays [?].

– the current image with skeletal model overlay as in Figure 6 is published on a ROS topic
in the main node loop. A mutex lock prevents simultaneous access to the current image
from image callback and main loop.

• DataFilter - filter implementation:

– Uses a Numpy array as the data type for the filter window.

– Saves points in the window and applies filter to it when it is full and a new point arrives.
The specific filtering function that is called depends on the value of the filter type attribute
of type String. The class contains a setter method for this attribute.

• HumanToHumanoidRetargeting - retargeting implementation:

– main function get angles returns a Numpy array of Pepper joint angles from 3D landmarks
on the human body

– class contains helper functions for calculation of each joint angle for both arms

Configuration File

The configuration file is named skeletal model configuration.json. It contains a list of
key-value pairs that determine the operation of the node.

Table 1: Configuration file for the skeletal model

Key Value Type Description
camera intrinsics List of lists of floats Contains matrix with camera’s in-

trinsic parameters
image width String Specifies the width of color and

depth used.
image height String Specifies the width of color and

depth images used.

Date: 31/01/2025
Version: No 1.3

Page 15

D5.5.1.2 Programming by Demonstration

Table 1: Configuration file for the skeletal model

Key Value Type Description
color image topic String Topic where color image feed is

published.
depth image topic String Topic where aligned depth image

feed is published.
left arm command topic String Topic to publish control signal for

left arm.
right arm command topic String Topic to publish control signal for

right arm.
gui commands topic String Topic to receive user commands to

change system behavior (e.g. filter)
skeletal model feed topic String Topic to publish images with skele-

tal model overlay.

Input File

During offline usage, a video file in the format .bag serves as input to the system. It should be placed
in the skeletal model/data folder and be called video input.bag. It should contain depth
information. The src folder contains an utility script to record a video with the Intel RealSense
camera.

Output Data File

There is no output data file for the actuator test. The result of the angle calculation from the skeletal
model is published on the skeletal model image feed and arm controller topics.

Topics Subscribed

Table 2: Topics subscribed by the skeletal model node.

Topic Message Type
/camera/color/image raw sensor msgs/Image

/camera/aligned depth to color/image raw sensor msgs/Image

/gui/commands std msgs/String

Date: 31/01/2025
Version: No 1.3

Page 16

D5.5.1.2 Programming by Demonstration

Topics Published

Table 3: Topics published by the skeletal model node.

Topic Message Type
/mediapipe/image feed sensor msgs/Image

/pepper dcm/LeftArm controller/command trajectory msgs/JointTrajectory

/pepper dcm/RightArm controller/command trajectory msgs/JointTrajectory

SkeletalModelEstimation

+ intrinsics: np.array
+ image_width: int
+ image_height: int
+ image_lock: threading.Lock()
+ latest_image: np.array
+ shutdown_flag:bool
+ filter: DataFilter
+ retargeting:
HumanToPepperRetargeting

+ image_callback(visual, depth)
+ get_landmarks(bgr_image)
+ get_3d coordinates(landmark,
depth_map)
+ get_pepper_angles(landmarks,
depth_map)
+ publish_angles(angles)
+ run()

DataFilter

+ window_size: int
+´window: np.array
+ full: bool
+ filter_type: str
+ valid_filters: list
+ butterworth: ButterworthFilter
+ biological: BiologicalMotionFilter

+ get_filtered_angles(data_point)
+ gui_callback(msg)
+ set_filter_type(filter_type)

HumanToPepperRetargeting

-

+ get_angles(landmarks)
- helper functions

BiologicalMotionFilter

+ middle_index: int
+ lambda_reg: float
+ Q_reg: np.array

+ filter(window: np.array)

ButterworthFilter

+ order: int
+ cutoff: float
+ sampling_rate: float
+ middle_index: int

+ filter(window: np.array)

Figure 9: UML class diagram for the skeletal model component. Class visualization contains name,
attributes and methods from top to bottom. Class relationships are of composition (filled
diamond), as classes where symbol ends instantiate the others as attributes.

Date: 31/01/2025
Version: No 1.3

Page 17

D5.5.1.2 Programming by Demonstration

Launch File

The skeletal model.launch launch file is used to launch the skeletal model node. The re-
quired parameter is set to true. The same file also launches the ROS driver for the camera. In this
implementation it is the ROS driver for the Intel RealSense camera with launch parameters:

• align depth: whether to align depth image to color image (possible values: true, false ;
default: true).

• color fps: frequency that images are captured in frames-per-second (possible values: 6,15,30
; default: 15).

• color width: specifies width of the color image, depth image is aligned to this width (pos-
sible values: see Figure 10, default: 1280).

• color height: specifies height of the color image, depth image is aligned to this height
(possible values: see Figure 10, default: 720).

Figure 10: Table with available image formats using USB 3.1 Gen 1 and the Intel RealSense D435 [?
]

Date: 31/01/2025
Version: No 1.3

Page 18

D5.5.1.2 Programming by Demonstration

5.3 Demonstration Recorder Implementation

Python Classes

The demonstration recorder component is implemented with several classes that achieve the
functionality depicted in Figure 5. The class diagram is depicted in Figure 11.

• Event, EventType, States, Commands - event implementation (Figure 12):

– The Event class defines an event with an event type, a command and optional arguments.

– The EventType is defined as a Python Enum and specifies DATA LOGGING, ROBOT CONTROL
and TERMINATE as possible types.

– DataLoggerCommands, DataLoggerStates, RobotCommands and RobotStates are all Enums
and define the available states and commands for the data logger and the robot event han-
dler.

• GuiInputHandler - user input implementation:

– Processes user input from the GUI buttons in a ROS subscriber callback by posting events
to an event queue shared with the DemoRecorder.

– It contains the input map object as an attribute that the user can define if adapting this class
to another input device. The keys are “Demonstrate and “Record” and the values represent
the corresponding inputs for Start and Stop. In the current implementation, these are the
GUI buttons, but in a custom implementation they can refer to e.g. the buttons on a mouse,
see Section 8.1.

• PepperRobotEventHandler - robot interface implementation:

– Contains handle event function that calls other class methods for connecting/disconnect-
ing the robot and starting/stopping demonstrate mode.

– Connection and demonstrate processes are started in subprocesses that execute ROS launch
files.

– A monitor function checks whether the demonstrate process exits and reports an exit di-
rectly to the user via the GUI by publishing a message on a ROS topic.

• PepperROS1DataLogger - data recording implementation:

– Contains handle event function that calls other class methods for starting/stopping data
logging, starting/stopping replay and setting the data, and indirectly the ROS topics, that
should be recorded.

– Record and replay processes are started in subprocesses using rosbag record and
rosbag play respectively.

– A monitor function checks whether the replay process exits and sets the state of the class
to IDLE on stopped replay.

– The set topics function receives types of data to record and maps it to the respective topics,
setting the topic list attribute that the record process uses to record the topics.

Date: 31/01/2025
Version: No 1.3

Page 19

D5.5.1.2 Programming by Demonstration

• GuiInformationDisplay - information display implementation:

– This class uses a ROS publisher to publish information from the other systems to the GUI.

– It also publishes the input map on startup, prompted by the DemoRecorder.

• DemoRecorder - orchestrating implementation:

– Implements the main loop which keeps the component running and delegates incoming
tasks from the user input handler to the data logger or the robot event handler.

– The information returned by both event handling systems is forwarded to the information
display for informing the user through the GUI.

– At startup, it publishes the input map for display in the GUI and passes the event queue to
the user input, which becomes shared.

– A terminate event triggered by user input will stop the system. This can be included, see
Section 8.1, but out of the box works by entering Ctrl-C in the terminal.

DemoRecorder

+ event_queue: queue.Queue
+ data_logger
+ robot_event_handler
+ user_input_handler
+ information_display

+ record_demo()

PepperROS1Logger

+ data_logger_state:
DataLoggerStates
+ topics_list: list
+ demo_dir_path: str
+ demo_counter: int
+ rosbag_script_path: str
+ record_processes

+ start_logging()
+ stop_logging()
+ change_topics(topics)
+ handle_event(event)

PepperRobotEventHandler

+ robot_state:RobotStates
+ demonstrate_process:
subprocess.Popen
+ monitor_thread: thread.Thread
+ monitoring: bool
+ gui_publisher: rospy.Publisher

+ connect(robot_ip, port,
network_interface)
+ start_demonstrate()
+ stop_demonstrate()
+ monitor_demonstrate_process()
+ handle_event(event)

GuiInputHandler

+ event_queue:queue.Queue

+ process_input()
+ get_input_mapping()
+ set_event_queue(queue)
+ post_event(event)

GuiInfoDisplay

+gui_publisher

+ display_input_map(map)
+ display_information(info)

Text

Information Display

Data Logger
Robot Event Handler

User Input Handler

Figure 11: UML class diagram for the demonstration recorder component. Class visualization con-
tains name, attributes and methods from top to bottom. Class instances are aggregated by
the DemoRecorder (unfilled diamond)

Configuration File

The configuration file is named demonstration recorder configuration.json. It con-
tains a list of key-value pairs that determine the operation of the node. The . here denote nested
parameters in the json structure.

Date: 31/01/2025
Version: No 1.3

Page 20

D5.5.1.2 Programming by Demonstration

EventType

DATA_LOGGING
ROBOT_CONTROL
TERMINATE

DataLoggerCommands

START_RECORD
STOP_RECORD
START_REPLAY
STOP_REPLAY
SET_TOPICS

DataLoggerStates

IDLE
RECORDING
REPLAYING

RobotStates

CONNECTED
DISCONNECTED

RobotCommands

CONNECT
DISCONNECT
START_DEMONSTRATE
STOP_DEMONSTRATE

Event

+ event_type: EventType
+ command:
Union[DataLoggerCommands,
RobotCommands]
+args: dict

Figure 12: Event types, states and enums as Python Enums, Event as a Python class

Table 4: Configuration file for the demonstration recorder

Key Value Type Description
data logger.topics list List of strings Specifies the list of topics to be recorded during

demonstration.
data logger.data dir String Specifies the root directory where the bag files will

be stored.
data logger.demo name String Specifies the name of the demonstration and will

be the directory inside data dir where the bag files
will be stored.

gui system logs topic String Topic where messages to be displayed in the GUI
are published.

gui commands topic String Topic to receive user commands to change behav-
ior (e.g. start recording).

skeletal model feed topic String Topic to publish images with skeletal model over-
lay.

Input File

There is no input file for the demonstration recorder node. The demonstrations are recorded from
messages that are sent on relevant topics in the ROS system.

Output Data File

Output .bag files comprise recorded demonstration data saved in <data dir>/<demo name> on
the local machine.

Date: 31/01/2025
Version: No 1.3

Page 21

D5.5.1.2 Programming by Demonstration

Topics Subscribed

Table 5: Topics subscribed by the demonstration recorder node.

Topic Message Type
/gui/commands std msgs/String

/joint states* sensor msgs/JointState

/pepper dcm/LeftArm controller/command* trajectory msgs/JointTrajectory

/pepper dcm/RightArm controller/command* trajectory msgs/JointTrajectory

*These topics are examples of topics that can be recorded by the data logger with rosbag.

Topics Published

Table 6: Topics subscribed by the demonstration recorder node.

Topic Message Type
/gui/system logs std msgs/String

Launch File

The demonstration recorder.launch launch file is used to launch the demonstration recorder
node. No launch parameters are required.

5.4 Demonstration GUI Implementation

Python Classes

The demonstration gui component is implemented with several classes that achieve the design
and functionality of the GUI (Figure 14). The class diagram is depicted in Figure 13.

• Ui MainWindow - visual elements implementation:

– setupUi function instantiates all elements that can be seen in the GUI such as labels, text
boxes and buttons.

– retranslateUi function sets the text for all the elements and translates them to their specified
position in the main window.

– This Python class is generated by PyQt5 from the .ui file generated with the Qt Designer
application, where the GUI was put together.

• RosThread and RosNode - ROS interface implementation:

– The Qt application needs to run in the main thread, so RosThread inherits from QThread
to spin a ROS node in a secondary thread

– The RosNode class contains this node which has two subscribers, one for system logs
and another for the skeletal model image feed, and one publisher for system commands.
It forwards incoming ROS messages to the MainWindow via PyQt signals and publishes
commands from the MainWindow to a ROS topic

Date: 31/01/2025
Version: No 1.3

Page 22

D5.5.1.2 Programming by Demonstration

• MainWindow - GUI logic implementation:

– This class instantiates both the others. Having access to the GUI elements from Ui MainWindow,
it connects the buttons to the class methods that enable the desired functionality, e.g. send-
ing commands to the RosThread instance for publishing.

– Incoming messages from the RosThread are processed by PyQt slots, which display the
logs in the system logs box or the skeletal model image feed above it.

– It also changes the color of status symbols on the GUI, i.e. the light icons, between green
and red depending on log messages from the other components of the Programming by
Demonstration system.

MainWindow

+ ui: Ui_MainWindow
+ gui_images_path: str
+ ros_thread: RosThread

+ connect_gui_buttons()
+ send_command(command)
+ clear_system_logs_box()
+ update_filter()
+ update_data_to_record()
+ display_info(info)
+ display_image_feed(cv_image)

RosThread

+ update_gui_signal: pyqtSignal
+ image_signal: pyqtSignal
+ publish_signal: pyqtSignal
+ ros_node: GuiRosNode

+ run()

GuiRosNode

+ update_gui_signal: pyqtSignal
+ image_signal: pyqtSignal
+ bridge: CvBridge
+ update_gui_sub:
rospy.Subscriber
+ image_sub: rospy.Subscriber

+ update_gui_callback(msg)
+ image_callback(ros_image)
+ publish_message(msg)

Ui_MainWindow

-

+setupUi(MainWindow)
+retranslateUi(MainWindow)

Figure 13: UML class diagram for the demonstration gui component. Class visualization contains
name, attributes and methods from top to bottom. Class relationships are of composition
(filled diamond), as classes where symbol ends instantiate the others as attributes.

Configuration File

The configuration file is named demonstration gui configuration.json. It contains a list
of key-value pairs that determine the operation of the node. The . here denote nested parameters in
the json structure.

Date: 31/01/2025
Version: No 1.3

Page 23

D5.5.1.2 Programming by Demonstration

Table 7: Configuration file for the demonstration GUI

Key Value Type Description
gui system logs topic String Topic where messages to be displayed in the GUI

are published.
gui commands topic String Topic to publish user commands to change

behavior in other subsystems (e.g. filter in
skeletal model).

skeletal model feed topic String Topic to publish images with skeletal model over-
lay.

Input File

There is no input file for the demonstration gui node. It responds to user input which it passes on to
the rest of the PbD system.

Output Data File

There is no output data file demonstration gui node. System logs are flushed to the terminal and the
GUI itself.

Topics Subscribed

Table 8: Topics subscribed by the demonstration gui node.

Topic Message Type
/gui/system logs std msgs/String

/mediapipe/image feed sensor msgs/Image

Topics Published

Table 9: Topics published by the demonstration gui node.

Topic Message Type
/gui/commands std msgs/String

Launch File

The demonstration gui.launch launch file is used to launch the demonstration gui node. No
launch parameters are required.

Date: 31/01/2025
Version: No 1.3

Page 24

D5.5.1.2 Programming by Demonstration

6 Running the Programming by Demonstration System

Each component of the PbD system builds functionality on top of the other. This section will show
how to run the components one by one and as a whole.

6.1 Run as a whole

To run all the components described in 6.2 at once, run:

Launch entire programming_by_demonstration system
roslaunch programming_by_demonstration programming_by_demonstration.

launch \
robot_ip:=<robot_ip> network_interface:=<network_interface> \
align_depth=<align_depth> color_fps:=<color_fps> \
color_width:=<color_width> color_height:=<color_height>

6.2 Run components one by one

The first step is to wake the robot with:

Wake up the Pepper robot
roslaunch pepper_interface_tests actuatorTestLaunchRobot.launch \
robot_ip:=<robot_ip> network_interface:=<network_interface>

After waking the robot, the user can run this command to launch the skeletal model node and the
Intel RealSense ROS driver:

Launch skeletal_model node and Intel RealSense ROS driver
roslaunch programming_by_demonstration skeletal_model.launch \
align_depth=<align_depth> color_fps:=<color_fps> \
color_width:=<color_width> color_height:=<color_height>

The user can now stand in front of the camera and the Pepper robot will imitate the demonstrated
gestures.

To record demonstrations, the user needs to launch the demonstration recorder node with:

Launch demonstration_recorder node
roslaunch programming_by_demonstration demonstration_recorder.launch

By using the implemented input device or sending ROS messages to the /gui/commands topic,
the user can start and stop recording demonstrations, which are saved as bag files.

Finally, do enable smoother operation with the use of a GUI, the user can activate it with:

Launch demonstration_gui node
roslaunch programming_by_demonstration demonstration_gui.launch

This allows the user to connect to the robot, start/stop demonstrating, start/stop recording data and
configuring the demonstration process all from the GUI.

Date: 31/01/2025
Version: No 1.3

Page 25

D5.5.1.2 Programming by Demonstration

7 Unit Tests

Unit tests with stub nodes are provided for each of the three components.

Skeletal Model Unit Test

To run the unit test:

Launch unit test for skeletal_model
roslaunch programming_by_demonstration skeletal_model.launch unit_test:=

true

• Launches the skeletal model component and a stub ROS camera driver node with publishers on
the color and depth image topics

• Driver publishes one visual and depth image pair from a provided image pair (publishes multiple
times to check if filter works after window of 3 is filled)

• skeletal model component calculates retargeted Pepper angles and logs them in the terminal.
The output should look like this (check for similar values):

Launch unit test for skeletal_model
[INFO] [1733825149.548106]: Publishing images...
[INFO] [1733825149.553157]: Images published successfully.
[INFO] [1733825149.765129]: Received image at timestamp:
1733825149547950267
[INFO] [1733825149.771075]: Received depth at timestamp:
1733825149547950267
{'LShoulderPitch': 1.9798229543652721, 'LShoulderRoll':
1.2625669566199917, 'LElbowRoll': -0.2965326466083589, 'LElbowYaw
': -2.7877042812891686, 'LWristYaw': 0, 'RShoulderPitch':
1.9550295042596533, 'RShoulderRoll': -1.0647517275688356, '
RElbowRoll': 0.3358612598878903, 'RElbowYaw': -2.537359649353141,
'RWristYaw': 0}
[WARN] [1733825150.317308]: Filter not yet ready: insufficient
data in window
[INFO] [1733825150.555286]: Publishing images...
[INFO] [1733825150.558529]: Images published successfully.
[INFO] [1733825150.562605]: Received image at timestamp:
1733825150555179834
[INFO] [1733825150.563171]: Received depth at timestamp:
1733825150555179834
{'LShoulderPitch': 1.9745303521213002, 'LShoulderRoll':
1.2551816026093596, 'LElbowRoll': -0.30925236016320845, '
LElbowYaw': -2.809200505750682, 'LWristYaw': 0, 'RShoulderPitch':
1.9574034886210552, 'RShoulderRoll': -1.0656933454976425, '

RElbowRoll': 0.3358612598878903, 'RElbowYaw': -2.537359649353141,
'RWristYaw': 0}
[WARN] [1733825150.583938]: Filter not yet ready: insufficient
data in window
[INFO] [1733825151.560466]: Publishing images...
[INFO] [1733825151.562860]: Images published successfully.

Date: 31/01/2025
Version: No 1.3

Page 26

D5.5.1.2 Programming by Demonstration

[INFO] [1733825151.565321]: Received image at timestamp:
1733825151560360193
[INFO] [1733825151.565907]: Received depth at timestamp:
1733825151560360193
{'LShoulderPitch': 1.941745668296518, 'LShoulderRoll':
1.2477372386287904, 'LElbowRoll': -0.30491699983987486, '
LElbowYaw': -2.803759898660347, 'LWristYaw': 0, 'RShoulderPitch':
1.9526899036771832, 'RShoulderRoll': -1.079199719003931, '

RElbowRoll': 0.33249978758958854, 'RElbowYaw':
-2.528508713797143, 'RWristYaw': 0}
[INFO] [1733825152.564869]: Published single pair of images 3
times. Shutting down.

Demonstration Recorder Unit Test

To run the unit test:

Launch unit test for demonstration_recorder
roslaunch programming_by_demonstration demonstration_recorder.launch

unit_test:=true

• Launches the demonstration recorder component and a stub ROS node for system control with
publishers on the /gui commands and /unit test topics

• Stub node publishes “RECORD[/demonstration recorder/unit test]” and then “START RECORD”
to the /gui commands topic .

• Stub node publishes three messages to the /unit test topic

• Stub node publishes “STOP RECORD” and then
“START REPLAY,/root/workspace/demo data/unit test/demo1 demonstration recorder unit test.bag”
on the /gui commands topic

• The demonstration recorder component services these requests, essentially running through the
behavioral graph in Figure 5

• The expected output is:

Launch unit test for skeletal_model
[INFO] [1733820757.971987]: System ready to start recording
[INFO] [1733820759.912621]: Published: RECORD['/
demonstration_recorder/unit_test']
[INFO] [1733820759.913496]: Received GUI Command: RECORD['
unit_test']
[INFO] [1733820759.916777]: Event posted. Type: EventType.
DATA_LOGGING, Command: DataLoggerCommands.SET_TOPICS
[INFO] [1733820759.917311]: Received event: DataLoggerCommands.
SET_TOPICS
[INFO] [1733820759.920464]: Set topics to record: ['/
demonstration_recorder/unit_test']
[INFO] [1733820759.922253]: Displaying: "[Data Logger] Set data
to record: unit_test "

Date: 31/01/2025
Version: No 1.3

Page 27

D5.5.1.2 Programming by Demonstration

[INFO] [1733820759.923024]: [Data Logger] Set data to record:
unit_test
[INFO] [1733820760.917509]: Published: START_RECORD
[INFO] [1733820760.918510]: Received GUI Command: START_RECORD
[INFO] [1733820760.921210]: Event posted. Type: EventType.
DATA_LOGGING, Command: DataLoggerCommands.START_RECORD
[INFO] [1733820760.921842]: Received event: DataLoggerCommands.
START_RECORD
[INFO] [1733820760.928813]: Started recording /
demonstration_recorder/unit_test in /root/workspace/demo_data/
unit_test/demo_1_demonstration_recorder_unit_test.bag
[INFO] [1733820760.930624]: Started recording all specified
topics
[INFO] [1733820760.931870]: Displaying: "[Data Logger] Data
logger is recording now."
[INFO] [1733820760.932215]: [Data Logger] Data logger is
recording now.
[INFO] [1733820761.219923]: Subscribed to /demonstration_recorder
/unit_test with queue size 1000
[INFO] [1733820761.921558]: Published: Unit Test Message 1
[INFO] [1733820761.922750]: Recording message on topic: /
demonstration_recorder/unit_test
[INFO] [1733820762.931992]: Published: Unit Test Message 2
[INFO] [1733820762.933116]: Recording message on topic: /
demonstration_recorder/unit_test
[INFO] [1733820763.936018]: Published: Unit Test Message 3
[INFO] [1733820763.937031]: Recording message on topic: /
demonstration_recorder/unit_test
[INFO] [1733820764.940185]: Published: STOP_RECORD
[INFO] [1733820764.941267]: Received GUI Command: STOP_RECORD
[INFO] [1733820764.943920]: Event posted. Type: EventType.
DATA_LOGGING, Command: DataLoggerCommands.STOP_RECORD
[INFO] [1733820764.944848]: Received event: DataLoggerCommands.
STOP_RECORD
[INFO] [1733820764.948580]: Stopping the recording process...
[INFO] [1733820765.569578]: Stopped recording successfully
[INFO] [1733820765.570798]: Displaying: "[Data Logger] Data
logger is stopped"
[INFO] [1733820765.571157]: [Data Logger] Data logger is stopped
[INFO] [1733820766.945135]: Published: START_REPLAY,/root/
workspace/demo_data/unit_test/
demo_1_demonstration_recorder_unit_test.bag
[INFO] [1733820766.946170]: Received GUI Command: START_REPLAY,/
root/workspace/demo_data/unit_test/
demo_1_demonstration_recorder_unit_test.bag
[INFO] [1733820766.956333]: Event posted. Type: EventType.
DATA_LOGGING, Command: DataLoggerCommands.START_REPLAY
[INFO] [1733820766.956714]: Received event: DataLoggerCommands.
START_REPLAY
[INFO] [1733820766.959354]: Starting replay of /root/workspace/
demo_data/unit_test/demo_1_demonstration_recorder_unit_test.bag
[INFO] [1733820766.965006]: Displaying: "[Data Logger] Started
replaying recording: /root/workspace/demo_data/unit_test/

Date: 31/01/2025
Version: No 1.3

Page 28

D5.5.1.2 Programming by Demonstration

demo_1_demonstration_recorder_unit_test.bag"
[INFO] [1733820766.965712]: [Data Logger] Started replaying
recording: /root/workspace/demo_data/unit_test/
demo_1_demonstration_recorder_unit_test.bag
[INFO] [1733820767.163282353]: Opening /root/workspace/demo_data
/unit_test/demo_1_demonstration_recorder_unit_test.bag

Waiting 0.2 seconds after advertising topics... done.

Hit space to toggle paused, or 's' to step.
[RUNNING] Bag Time: 1733820763.837444 Duration: 1.906034 /

2.008535
Done.
[INFO] [1733820769.966203]: Replay process completed.
[INFO] [1733820770.959234]: Unit test sequence completed.
[INFO] [1733820770.962189]: Terminating /
demonstration_recorder_node...
killing /demonstration_recorder_node
shutdown request: user request
killed
[INFO] [1733820771.336907]: demonstration_recorder_stub finished.

Demonstration GUI Test

To run the unit test:

Launch unit test for demonstration_gui
roslaunch programming_by_demonstration demonstration_gui.launch unit_test

:=true

• Launches the demonstration gui component

• Button presses are simulated in sequence

• Stub script simulates Button presses

• Logs from button presses are captured in the terminal with expected output:

Launch unit test for skeletal_model
[INFO] [1733821693.462117]: Sub to: /gui/system_logs
[INFO] [1733821693.475778]: Performing Unit Test: True
[INFO] [1733821694.478073]: Running unit tests...
[INFO] [1733821694.481028]: Testing CONNECT button...
[INFO] [1733821695.483899]: Testing DISCONNECT button...
[INFO] [1733821696.487381]: Testing START_DEMONSTRATE button...
[INFO] [1733821696.491195]: Publishing on /gui/commands: CONNECT
,172.29.111.230,5995
[INFO] [1733821697.493879]: Testing STOP_DEMONSTRATE button...
[INFO] [1733821697.497546]: Publishing on /gui/commands:
START_DEMONSTRATE
[INFO] [1733821698.500063]: Testing START_RECORD button...

Date: 31/01/2025
Version: No 1.3

Page 29

D5.5.1.2 Programming by Demonstration

[INFO] [1733821698.503252]: Publishing on /gui/commands:
STOP_DEMONSTRATE
[INFO] [1733821699.505606]: Testing STOP_RECORD button...
[INFO] [1733821700.510478]: Testing START_REPLAY button...
[INFO] [1733821700.516749]: Publishing on /gui/commands:
STOP_RECORD
[INFO] [1733821701.519234]: Testing STOP_REPLAY button...
[INFO] [1733821702.523401]: Testing BROWSE button...
[INFO] [1733821702.530924]: Publishing on /gui/commands:
STOP_REPLAY
[INFO] [1733821703.532863]: Testing CLEAR button...
[INFO] [1733821719.140138]: All tests completed.

• Additionally, in the GUI, a FileDialog window should open and the system logs box should be
cleared before the end of the test

Date: 31/01/2025
Version: No 1.3

Page 30

D5.5.1.2 Programming by Demonstration

8 For Developers

There are several ways to adapt and extend the system to a custom application, robot or input device.
This section provides directions to developers who want to make these changes to the tool.

8.1 Use another input device

The GUI’s buttons can be used to control the demonstration process. Other inputs such as a dedicated
mouse or keyboard keys can be more intuitive and practical during demonstrations. Here are the
necessary steps to add a new input device. As the communication is done via ROS, there is no limit
to the amount of input devices that can be used, although simplicity is advised.

• Implement a custom User Input Handler class for your input device with the same methods as the
implementation in this module

• Poll the input device in its own thread

• Replace the implementation of the User Input Handler in demonstration recorder application.py
with your own or add it to the list of inputs

8.2 Demonstrate for another robot

The current implementation is focused on Pepper. However the modular approach allows developers
to retarget human joint positions to the joints of other humanoid robot by following these steps:

• Implement a custom Robot Event Handler class for your robot with the same methods as the
implementation in this module

• Implement a custom Keypoints to Angles class for retargeting human joint positions to the kine-
matics of your robot

• Replace the implementation of the Robot Event Handler in demonstration recorder application.py
and the implementation of Keypoints to Angles in skeletal model implementation.py
with your own

• If necessary, change the topic names in the configuration files to suit the topic names from your
robot

8.3 Record more data

Data collection is done with rosbag. Each recorded topic is saved to a different .bag file. To
change the topics being recorded during demonstrations you can:

• If not existent, add a ROS node publishing information you are interested in to a ROS topic

• Change the topics list to include all topics you want data from

Date: 31/01/2025
Version: No 1.3

Page 31

D5.5.1.2 Programming by Demonstration

8.4 Change filter

Filters are implemented as separate classes for modularity and included in the DataFilter class for
integration.

• Go to the skeletal model filters implementation.py file

• Implement your filter class similar to the the existing filter implementations

• include your filter in the DataFilter class alongside the others, making sure it is in the valid filters
list, instantiated as an attribute and its filter method called in the get filtered angles func-
tion

Date: 31/01/2025
Version: No 1.3

Page 32

D5.5.1.2 Programming by Demonstration

Principal Contributors

The main authors of this deliverable are as follows (in alphabetical order).

Daniel Barros, Carnegie Mellon University Africa.
David Vernon, Carnegie Mellon University Africa.

Date: 31/01/2025
Version: No 1.3

Page 33

D5.5.1.2 Programming by Demonstration

Appendix I: User Manual — PepperTrace Programming by Demonstra-
tion Tool

Introduction

This user manual provides offers instructions on how to use the PepperTrace Programming by Demon-
stration tool, abstracted from implementation and assuming minimal prior knowledge of software en-
gineering.

The manual includes:

• Instructions on installing, configuring and executing the tool software

• A walkthrough of the main features of the tool’s Graphical User Interface (GUI)

• Guidelines for reporting bugs or requesting features

The source code can be found on the Github repository.

Date: 31/01/2025
Version: No 1.3

Page 34

https://github.com/danielcortezbarros/peppertrace

D5.5.1.2 Programming by Demonstration

Getting Started with the Tool

Installation

The tool is available in a Docker container to enable users of other operating systems and setups to
use Ubuntu 20 with ROS Noetic. This tutorial is targeted for Windows users.

Step 1: Install Docker from the official website. A video walkthrough can be found here. Open a
terminal and verify the installation with

docker --version

Step 2: Pull the PepperTrace Docker image. This takes a while depending on your internet connec-
tion. The image is still quite heavy and will be reduced in future versions of the software. After
installing, verify that the image has been pulled correctly.

docker pull danielcortezbarros/peppertrace
docker images

Step 3: We need an X-Server on Windows to be able to use the GUI inside the Docker container.
Please install it here.

Step 4: We also need a tool to give Docker access to the camera via USB. Please install this here.

Execution

With one exception that is specified below, the following steps are necessary each time to run the
PepperTrace Programming by Demonstration Tool. It may be more practical to copy the commands
from the Github repository’s README.md file, where these steps are also articulated.

Step 1: Start the X-server by launching the app and clicking “Multiple windows”, “Next”, “Start no
client”, “Next”, “Disable access control”, “Finish”. Leave previously checked fields unchanged.
This should start the server. You can check by looking for an icon with a black X in the up-arrow
in the windows task bar.

Step 2: Make sure that the Intel RealSense camera is plugged into USB. Run a Windows PowerShell
as an administrator (click Windows icon and search for it) and run:

usbipd list

Find the Intel RealSense and note the bus id for the following commands e.g. 4-4:

usbipd bind --busid 4-4
usbipd attach --wsl --busid 4-4

Step 3: In the commands below, replace $DISPLAY with your PC’s IP address. The following com-
mand is only used the first time executing the tool. If you have an Nvidia GPU on your machine
run:

Date: 31/01/2025
Version: No 1.3

Page 35

https://docs.docker.com/desktop/setup/install/windows-install/
https://www.youtube.com/watch?v=WDEdRmTCSs8
https://sourceforge.net/projects/vcxsrv/
https://github.com/dorssel/usbipd-win/releases/tag/v4.3.0
https://github.com/danielcortezbarros/peppertrace

D5.5.1.2 Programming by Demonstration

docker run --name peppertrace-container --privileged \
--device=/dev/bus/usb/ --runtime=nvidia --gpus all \
-e DISPLAY=$DISPLAY -v /tmp/.X11-unix:/tmp/.X11-unix -it \
danielcortezbarros/peppertrace:latest

Otherwise run:

docker run --name peppertrace-container --privileged \
--device=/dev/bus/usb/ -e DISPLAY=$DISPLAY \
-v /tmp/.X11-unix:/tmp/.X11-unix -it \
danielcortezbarros/peppertrace:latest

From the second time onwards, simply run the existing container:

docker start peppertrace-container

Step 4: Pull the latest changes from the Github repository:

cd /root/workspace/pepper_rob_ws/src/programming_by_demonstration
git pull

Step 5: When running for the first time or with a new camera, run this script to configure the camera
parameters, otherwise skip this step.

python3 /root/workspace/pepper_rob_ws/src/
programming_by_demonstration skeletal_model/config/
set_camera_intrinsics.py

Step 6: Start the tool by running the following command. This should launch the GUI depicted in
Figure 14.

roslaunch programming_by_demonstration
programming_by_demonstration.launch

The tool is now ready to use. To report issues please refer to Section 8.4.

Date: 31/01/2025
Version: No 1.3

Page 36

D5.5.1.2 Programming by Demonstration

Figure 14: Graphical User Interface for the PepperTrace Programming by Demonstration Tool

(Optional) Configuration

The programming by demonstration software package consists of three components, skeletal model,
demonstration recorder and demonstration gui, each with configuration files in their
/config folders.

Configure skeletal model: Besides the camera intrinsics there are other configuration options in the
config file of the skeletal model component, however it is not necessary to change them.

Configure demonstration recorder: You can check and configure where data recordings are stored
in the configuration file of the demonstration recorder component through the data dir
(base directory) and demo name (demo directory) parameters. It is not necessary to change
the parameters.

Configure demonstration gui: You can configure some parameters for the GUI in the configuration
file of the demonstration gui component. This is not necessary.

Date: 31/01/2025
Version: No 1.3

Page 37

D5.5.1.2 Programming by Demonstration

Main Features

The PepperTrace GUI contains the following features for connecting to the robot, performing, record-
ing and replaying demonstrations while logging imporant information for the user.

Connect: Enter the IP address and port of the Pepper robot and click the CONNECT button. This
should connect the GUI to the Pepper robot and enable its controllers. Pressing the button again
will stop the controllers and disconnect the robot.

Demonstrate: Press START under Demonstrate to enable demonstration. If a human is present in
front of the camera, the software will capture its upper body movements and retarget them to
Pepper in real time. Pressing STOP will stop this process.

Record: Press START under Record to record a demonstration. Check the boxes corresponding to
the data that should be recorded during the demonstration. Demonstrate needs to be enabled for
this to work. This will save the specified data to .bag files.

Replay: Enter the path to a .bag file for replaying data and reproducing movement demonstrated
in a previous recording session. Alternatively, click the Browse button and select the .bag file
from the file dialog that appears. Click START to replay the bag file. The process will stop
automatically when there is no more data to publish, unless you press STOP to before that.

Logging: System logs (Infos, Warnings, Errors) are displayed to the System Logs box in the GUI.
The skeletal model feed is displayed in the GUI when Demonstrate is on and the upper body
joints of a human are detected in front of the camera.

These features are illustrated in the behavioural graph in Figure 15.

Date: 31/01/2025
Version: No 1.3

Page 38

D5.5.1.2 Programming by Demonstration

Figure 15: Behavioural graph of the PbD module: The user-centered graph shows an example proce-
dure for demonstrating, recording and replaying. Rectangular boxes represent observable
processes, diamond-shaped boxes stand for checks, non-rectangular boxes represent user
action. “Gesture Replay” is the termination element. The blue line indicates the available
option of recording multiple demonstrations in one session.

Date: 31/01/2025
Version: No 1.3

Page 39

D5.5.1.2 Programming by Demonstration

Guidelines for Reporting Issues

To report an issue or request a feature, please follow these steps:

Step 1: Go to the Github repository and go to “Issues”.

Step 2: Check if your issue exists, otherwise open a new issue by clicking “New issue”.

Step 3: Add a label to the issue:

bug: For reporting something that is not working.

new feature: For requesting a new feature.

docs: For requesting further documentation.

question: For general remarks.

Step 4: Please give a descriptive title and report the issue as clearly and with as much detail as possi-
ble, including code sections if applicable.

Step 5: Follow and monitor the issue, as the developers may have follow-ups.

Date: 31/01/2025
Version: No 1.3

Page 40

https://github.com/danielcortezbarros/peppertrace

D5.5.1.2 Programming by Demonstration

Document History

Version 1.0
First draft.
Daniel Barros.
14 December 2024.

Version 1.1
Formatting fixes.
Daniel Barros.
16 December 2024.

Version 1.2
Fixed formatting issues.
Renumbered D5.5.1.L to D5.5.1.2 Programming by Demonstration.
Added Appendix I: User Manual — PepperTrace Programming by Demonstration Tool.
David Vernon.
6 January 2025.

Version 1.3
Fixed formatting issues.
Changed programming from demonstration to programming by demonstration
throughout.
David Vernon.
31 January 2025.

Date: 31/01/2025
Version: No 1.3

Page 41

	Introduction
	Requirements Definition
	Module Specification
	Module Design
	Design Overview
	Image Source
	Skeletal Model
	Demonstration Recorder
	Demonstration GUI

	Implementation
	File Organization & Purpose
	Skeletal Model Implementation
	Demonstration Recorder Implementation
	Demonstration GUI Implementation

	Running the Programming by Demonstration System
	Run as a whole
	Run components one by one

	Unit Tests
	For Developers
	Use another input device
	Demonstrate for another robot
	Record more data
	Change filter

	References
	Principal Contributors
	Appendix I: User Manual — PepperTrace Programming by Demonstration Tool
	Document History

