Culturally Sensitive Social Robotics
CSS R fo”; y for Africa

D5.5.1.1 Gesture Execution

Due date: 30/09/2024
Submission Date: 10/10/2024
Revision Date: 06/01/2025

Start date of project: 01/07/2023 Duration: 36 months
Lead organisation for this deliverable: Carnegie Mellon University Africa

Responsible Person: Adedayo Akinade Revision: 1.1

Project funded by the African Engineering and Technology Network (Afretec)
Inclusive Digital Transformation Research Grant Programme

Dissemination Level

PU | Public PU

PP | Restricted to other programme participants (including Afretec Administration)

RE | Restricted to a group specified by the consortium (including Afretec Administration)

CO | Confidential, only for members of the consortium (including Afretec Administration)

Executive Summary

Deliverable D5.5.1.1 is focused on developing a comprehensive software module for Gesture Execu-
tion, enabling the Pepper robot to perform a range of body and hand gestures. This module encom-
passes five distinct gesture types: deictic, symbolic, and iconic hand gestures, as well as bowing and
nodding body movements. Deictic gestures refer to pointing to specific things in the environment
and is important for establishing joint attention [?]. The development process involves approaches
to gesture specification, utilising joint space representations for most gestures and Cartesian space
for deictic movements. A key feature of this module is its ability to learn gestures through manual
teleoperation or human demonstration, employing RGB-D camera technology to map human skeletal
movements onto the robot’s joint system. This latter functionality is still under development and will
be documented in the next version of this deliverable.

The deliverable outlines a software development methodology, including requirements definition,
module specification, interface design, module design, coding, and unit testing. Each phase of this
process is documented, as outlined in the deliverable. The module integrates with the robot localiza-
tion system developed in Task 4.2.4, ensuring gesture execution within the robot’s environment. This
integration is crucial for deictic gestures, where precise pointing in the world frame of reference is
essential. The interface design covers input parameters, output gestures, and control data, specifying
appropriate data structures for each gesture type. All coding activities adhere to established software
engineering standards as set out in Deliverable D3.2, ensuring high-quality, maintainable code.

Date: 06/01/2025
Version: No 1.1

Contents

Executive Summary

1 Introduction

2 Requirements Definition

3 Module Specification

4 Module Design
4.1 DeicticGestures v o i i e e e e e e e e e e e e e
4.2 Iconic and Symbolic Gestures
4.3 Bow GeStures i e e e e e e e e e e e e e e e e
4.4 Nod GeStures v v v it e e e e e e

5 Implementation

6 Executing the Gestures

7 Unit Tests

References

Principal Contributors

Document History

15

19

21

22

22

23

Date: 06/01/2025
Version: No 1.1

1 Introduction

This document describes the development and implementation of a ROS node for the execution of
gestures on the Pepper robot. The gestures include deictic, iconic, symbolic, bow, and nod gestures.
The actuators embedded in Pepper’s head enable turn and nod motions, thereby fostering engaging
interactions through nuanced head movements. The arm and hand actuators give Pepper the capability
to mimic human gestures, enhancing its nonverbal communicative and interactive potential. The
actuators in the hands further permit the opening and closing motions. Such functionality isneeded
for projects emphasizing non-verbal communication through various gestures and movements.

Moreover, the inclusion of actuators in the torso and hips extends Pepper’s mobility, allowing it
to perform bends and twists. This flexibility is crucial for adapting Pepper’s movements to reflect
various cultural norms of body language, thereby enabling a culturally sensitive interaction.

Head Yaw
Head Pitch

ShoulderPitch
ShoulderRoll

ElbowRoll
ElbowYaw

WristYaw
Hand

HipRoll - WheelB
HipPitch .-. / "

KneePitch Wheel FR

Wheel FL \ —f /

Figure 1: Pepper robot actuators

This deliverable presents a report that details each phase of the software development lifecycle
for our gesture execution system. Section 2 describes the requirements definition process, where
functional necessities are aligned with the project’s overarching goals. This foundational section
establishes the framework upon which subsequent development efforts are built.

Section 3 documents the module specifications, providing details on the execution of gestures. In-
terface design is then addressed, with particular attention given to data exchange mechanisms utilizing
ROS middleware and file input/output operations.

Date: 06/01/2025
Version: No 1.1

The operational framework of the module is described in Section 4, with a focus on the role of the
gestureExecutionConfiguration.ini configuration file in governing system behaviour.
This section also outlines the structured approach implemented for handling and processing message
data, ensuring efficient and reliable communication within the system.

Section 5 presents the implemented program code, adhering to the coding standards specified in
Deliverable D3.2. This section also provides insights into key algorithms and data structures em-
ployed.

Date: 06/01/2025
Version: No 1.1

2 Requirements Definition

The gesture execution provides the robot with the ability to execute five forms of gesture: deictic,
symbolic, and iconic non-verbal hand gestures, and bowing and nodding body gestures. This deliv-
erable is important in identifying the specific user expectations, ensuring that the node is capable of
executing the different gestures in various scenarios, including different operations and environments
(physical robot and simulator).

As seen from the diagram in Figure 1, the Pepper robot has 20 joint actuators and 3 wheel actuators.
The module must be capable of actuating the arm joints to point at a location in the world (for deictic
and iconic gestures), actuating the leg joints (for bow gestures), and actuating the head joints (for
nod gestures). If the arm cannot achieve the required pose for a deictic gesture, the robot rotates to
make the pose achievable, returning to the original orientation once the gesture is complete. Thus, the
module must be capable of actuating the wheels. Furthermore, the arm returns to a neutral position
by the robot’s side when the gesture is complete.

The module must be capable of reading a set of effector waypoints from a file for an iconic gesture
and actuating through the points. If an iconic or symbolic gesture involves two arms, they are treated
as a composite of two individual gestures, one for each arm.

The pointing location with respect to the robot body, specified by the shoulder pitch and shoulder
roll angles, must be computed from the pointing location in the world frame of reference (provided
through a service request by a client) and the pose of the robot in the world frame of reference (ac-
quired by subscribing to a topic published by the robotLocalization node). The module must
be capable of actuating the joints to achieve the target joint angles, interpolating linearly, or adjusting
the joint angles, joint angular velocities, and joint accelerations to mimic biological movement by
using a minimum jerk model of biological motion.

The module must be able to run in normal mode or verbose mode. In verbose mode, data that is
published to topics is also printed to the terminal.

Date: 06/01/2025
Version: No 1.1

3 Module Specification

The specifications for these gestures are in joint space, except for deictic gestures which are in Carte-
sian space. Some gestures, e.g., iconic and symbolic hand gestures, are specified by learning the
required motions either by manual teleoperation, recording the joint angles, or by demonstration, us-
ing an RGB-D depth camera to determine the joint angles of human gestures in a skeletal model and
mapping these to the robot joints. Other gestures, i.e., deictic hand gestures and body gestures, are
specified by gesture parameters, such as the pointing location for deictic gestures and the degree of
inclination for bowing and nodding, and the joint angles are computed using the kinematic model of
the robot head, torso, and arms. For deictic gestures, which require the robot to point at objects in its
environment, the pose of the robot in the world frame of reference is also used.

Iconic and symbolic gestures are defined by descriptors that specify the final gesture joint config-
uration and how that configuration is achieved. Descriptors comprise four elements. Each element is
a key-value pair, where the value can be an identifier, a number, a vector of numbers, or a vector of a
vector of numbers.

The first key-value pair specifies the gesture type (e.g., type iconic, type symbolic).

The second key-value pair identifies the ID number (e.g., ID 01).

The third element defines the number of waypoints in the trajectory, including the start gesture
joint configuration and the final gesture joint configuration.

The fourth element is a vector of joint angles vectors. The number of joint angle vectors is equal
to the number of waypoints, including the start joint configuration and the final gesture configuration.
Body gestures have three joints: knee pitch, hip pitch, hip roll. Iconic and symbolic gestures have
five joints: shoulder pitch, shoulder roll, elbow yaw, elbow roll, and wrist yaw. Before beginning the
gesture, the arm is moved from its current joint configuration to the start joint configuration, i.e., the
joint angles specified in the first vector in the vector of vector of joint angles.

The number of elements in the vector of joint angles is determined by the gesture type.

Descriptors for each gesture are stored in an external descriptor file.

The joint angles for bow and nod body gestures, as well as hand deictic gestures, are computed at
run time using the kinematic model of the robot and the bow angle, nod angle, or the location in the
environment to which the robot should point. The bow angle, nod angle, and pointing location are
provided as input to the module, along with the time in milliseconds that should elapse between the
start of the gesture and the end of the gesture.

The pointing location with respect to the robot body, specified by the shoulder pitch and shoulder
roll angles, is computed from the pointing location in the world frame of reference (and supplied as
an input to the module) and the pose of the robot in the world frame of reference (provided by the
robotLocalization node. No waypoints are required for deictic gestures; the joints are actuated
to achieve the target joint angles, interpolating linearly, or adjusting the joint angles, joint angular
velocities, and joint accelerations to mimic biological movement by using a minimum jerk model of
biological motion.

The knee pitch angle is fixed during a bow body gesture and the bow angle corresponds to the
change in the hip pitch angle with respect to the default hip pitch angle. Similarly, the nod angle is
the change in the head pitch angle with respect to the default head pitch angle. Finally, the arm and
fingers are straight in a deictic gesture, with fixed values of elbow yaw, elbow roll, wrist yaw, and
hand angles, so that the palm of the hand is directed upwards, the angles being derived from the pose
of the robot with respec to the location to which the robot is gesturing.

The input to the module, as a service request from a client, is a record comprising the gesture type
(e.g., iconic, symbolic, deictic, bow, nod), the gesture ID for symbolic or iconic gestures

Date: 06/01/2025
Version: No 1.1

(e.g., 01), the duration of the gesture in milliseconds, and either a bow angle in degrees (for a bow
body gesture), or a nod angle in degrees (for a nod body gesture), or the three-dimensional coordinates
of a pointing location (for a deictic gesture). For deictic gestures, the module also inputs the current
robot pose from the robotLocalization node.

The output of the module is a sequence of joint angles, joint angular velocities, and, optionally,
joint angular accelerations. This output information is compiled into trajectory information, which is
sent to the action server created for the appropriate topics, as contained in the topics file for the robot
robotTopics.dat and the topics file for the simulator simulatorTopics.dat. The names
of the topics to be used for each actuator is read from this data file comprising a sequence of key-value
pairs. The key is the name of the actuator. The value is the topic name. There are two data files, one
for the physical robot and another for the simulator.

The module can run in normal mode or verbose mode. In verbose mode, data that is published to
topics are also printed to the terminal.

Date: 06/01/2025
Version: No 1.1

4 Module Design

4.1 Deictic Gestures

Upon receipt of a service request for a location to point to, the module employs inverse kinemat-

ics to calculate the requisite joint angles for Pepper’s arm, enabling precise pointing towards the
specified coordinates. This calculation is followed by a validation process to ensure the computed an-
gles fall within the robot’s operational limits. The function void get_arm.angles (int arm, double
elbow_x, double elbow.y, double elbow.z, double wrist_x, double wrist_.y, double wrist_z,
doublex shoulder_pitch, doublex shoulder._roll, doublex elbow.yaw, doublex elbow_roll)
takes in the 3D coordinates of the elbow of the robot, which is interpolated based on the lengths of the
robot arm, and updates the joint angles for the shoulder and elbow.

A notable feature of this implementation is the optional incorporation of a biological motion
model described by [?]. When activated, this model generates trajectories that emulate human-like
movements, enhancing the naturalness of the robot’s gestures. This feature contributes to the effec-
tiveness of non-verbal communication between the robot and human observers. The function void
compute_trajectory (std::vector<double> start_position, std::vector<double> end_position,
int number_of_joints, double trajectory._duration,
std::vector<std::vector<double>>& positions, std::vector<std::vector<double>>& velocities,
std::vector<std::vector<double>>& accelerations, std::vector<double>& durations) COm-
pute the trajectory parameters required to move from the default position to that configuration. These
trajectory parameters include:

* positions: The different positions (joint angles) in the trajectory

* velocities: The joint velocities at each waypoint in the trajectory

* accelerations: The joint accelerations at each waypoint in the trajectory

* duations: the duration of movement between each joint angle in the trajectory

The flow of the gesture execution of a deictic gesture is shown in Figure 2 below. Given a location
Tp, Yp, Zp in three-dimensional space required to point to, the algorithm for the system is listed in
Algorithm 1 below.

joint states

positions

Xp joi Should |
— > " oulder
iointAngle1 » velocities '
goal
jointAngle2 JointAngle
gdo_a‘t o » inverseKi i »| forwardKinematics » computeTrajectory accelerations moveActuator frajectory
coordinates
z jeintAngle_n
;) 4

gestureDuration
actionClient

actuator
createClient

Figure 2: Architecture of the Gesture Control System for Deictic Gestures

Date: 06/01/2025
Version: No 1.1

Algorithm 1 Deictic Gesture Execution Algorithm

Require: biological MotionFlag, actuatorJoint, gestureDuration, xp, yp, Zp
Ensure: gestureDuration > 0
T Tp
Y<—Yp
Z 4 2p
jointAngles < inverseKinematics(x, y, 2) > Compute the joint angles
for joint Angle in joint Angles do
xy,yf, 25 = forwardKinematics(joint Angle) > Obtain the position
ifxyp yr, zp = x,y,2 then > JointAngle is valid
break
else
status < 0
return status
end if
end for
jointClient < createClient(actuatorJoint) > Create ROS actionClient
if biological M otionF'lag is True then
Positions, Velocities, Accelerations <— computeTrajectory(joint Angle)
status < moveActuator(jointClient, Positions, Velocities, Accelerations)
else
status < moveActuator(jointClient, joint Angle) > Move the joint
end if
return status

Date: 06/01/2025
Version: No 1.1

4.2 Iconic and Symbolic Gestures

The specifications for these gestures are in joint space, which are specified in different files for
the different gestures. The specifications for the wave gesture descriptors are in the file named
waveGestureDescriptors.dat. Welcome gestures are a composite of two arms, thus, the
specification for this gesture is in two files 1ArmiWelcomeGestureDecriptors and
rArmWelcomeGestureDescriptors. The specifications in the files contain the information
about each gesture. This information includes the ID of the gesture, the number of waypoints (includ-
ing the start and end joint angle), and the joint angles at each waypoint (delimited by a semicolon). The
gestures have been allocated IDs, which are stored in a file named gestureDescriptors.dat
and specified in table 1 below:

Table 1: Iconic and Symbolic Gestures and their Allocated IDs

ID | Gesture Gesture Arm | Descriptor Filename

01 | Welcome Gesture | Right Arm rArmWelcomeGestureDescriptors.dat

Left Arm 1ArmWelcomeGestureDescriptors

02 | Welcome Gesture | Right Arm rArmWelcomeGestureDescriptors.dat

Left Arm 1ArmWelcomeGestureDescriptors

03 | Wave Gesture Right Arm | waveGestureDescriptors.dat

Upon receipt of the service request, the module reads the descriptor file for the ID requested. The
joint angles at each waypoint are read from the file and parsed. If activated, the biological motion
model computes the trajectory for the motion through the waypoints. The execution phase utilises
an action server to translate the computed trajectory into physical movement. This server controls
Pepper’s arms, ensuring the gesture is performed within the specified duration and with the required
precision. Throughout the execution, the system continuously monitors the gesture’s progress. The
flow of the gesture execution of an iconic gesture is shown in Figure 3 below. Given an ID gesture_id,
the algorithm for the system is listed in Algorithm 2 below.

joint states

positions

Shoulder
velocities

- R goal
jointAnglesWaypoints|
gesture M} extractDescriptors |———— % computeTrajectory | accelerations moveActuator frajectory Elbow

D
Wrist
gestureDuration (—b

actionClient

Uil

actuator
createClient

Figure 3: Architecture of the Gesture Control System for Iconic Gestures

Date: 06/01/2025
Version: No 1.1

Algorithm 2 Iconic Gesture Execution Algorithm

Require: biological MotionFlag, actuatorJoint, gesture Duration, gesture_id
Ensure: gestureDuration > 0
gesturel D + gesture_id
jointAngleW aypoints < extractDescriptors(gesturel D) > Extract the waypoints
jointClient < createClient(actuatorJoint) > Create ROS actionClient
if biological M otionF'lag is True then
Positions, Velocities, Accelerations < computeTrajectory(joint AngleW aypoints)
status < moveActuator(jointClient, Positions, Velocities, Accelerations)
else
status < moveActuator(jointClient, joint Angle) > Move the joint
end if
return status

Work is being done on specifying the iconic and symbolic hand gestures by learning the required
motions either by demonstration, using an RGB-D depth camera to determine the joint angles of
human gestures in a skeletal model and mapping these to the robot joints.

Date: 06/01/2025
Version: No 1.1

4.3 Bow Gestures

Upon receipt of the service request specifying a degree to bow, the module processes the input pa-
rameters and if activated, the biological motion model computes the trajectory for the motion. The
execution phase utilises an action server to translate the computed trajectory into physical movement.
This server controls Pepper’s hip and knee joints, ensuring the gesture is performed within the spec-
ified duration and with the required precision. Throughout the execution, the system continuously
monitors the gesture’s progress. The flow of the gesture execution of a bow gesture is shown in Figure
4 below. Given an angle theta_degrees in degrees required to bow, the algorithm for the system is
listed in Algorithm 3 below.

joint states

positions

velocities

goal
bowAngle i
;‘Ere ——g—) computeTrajectory | accelerations moveActuator trajectory

actionClient

actuator
createClient

Figure 4: Architecture of the Gesture Control System for Bow Gestures

Algorithm 3 Bow Gesture Execution Algorithm

Require: biological MotionFlag, actuatorJoint, gesture Duration, theta_degrees
Ensure: gestureDuration > 0
jointAngle < theta_degrees
jointClient < createClient(actuatorJoint) > Create ROS actionClient
if biological M otionF'lag is True then
Positions, Velocities, Accelerations < computeTrajectory(joint Angle)
status < moveActuator(jointClient, Positions, Velocities, Accelerations)
else
status < moveActuator(jointClient, joint Angle) > Move the joint
end if
return status

Date: 06/01/2025
Version: No 1.1

4.4 Nod Gestures

Upon receipt of the service request specifying a degree to nod, the module processes the input pa-
rameters and if activated, the biological motion model computes the trajectory for the motion. The
execution phase utilises an action server to translate the computed trajectory into physical movement.
This server controls Pepper’s hip and knee joints, ensuring the gesture is performed within the spec-
ified duration and with the required precision. Throughout the execution, the system continuously
monitors the gesture’s progress. The flow of the gesture execution of a nodding gesture is shown
in Figure 5 below. Given an angle theta_degrees in degrees required to nod, the algorithm for the
system is listed in Algorithm 4 below.

joint states

positions

velocities
goal

nodAngle i
arr‘|ugl|je ——g—) computeTrajectory | accelerations moveActuator trajectory

actuator

actionClient

createClient

Figure 5: Architecture of the Gesture Control System for Nod Gestures

Algorithm 4 Nod Gesture Execution Algorithm

Require: biological MotionFlag, actuatorJoint, gesture Duration, theta_degrees
Ensure: gestureDuration > 0
jointAngle < theta_degrees
jointClient < createClient(actuatorJoint) > Create ROS actionClient
if biological M otionF'lag is True then
Positions, Velocities, Accelerations < computeTrajectory(joint Angle)
status < moveActuator(jointClient, Positions, Velocities, Accelerations)
else
status < moveActuator(jointClient, joint Angle) > Move the joint
end if
return status

Date: 06/01/2025
Version: No 1.1

5 Implementation

File Organization

The source code for executing the gestures is structured into three primary components: gestureExe-
cutionApplication, gestureExecutionlmplementation, and pepperKinematicsUtilities. The gestureEx-
ecutionlmplementation component encapsulates all the essential functionality required for executing
the gestures. This includes diectic, iconic, bow, and nod gestures. The gesture execution node is
also equipped with the functionality to process various files critical for the execution process, which
include configuration files, gesture descriptor files, and topic files.

On the other hand, the gestureExecutionApplication invokes those functions for the execution pro-
cess. It is tasked with the execution of functions defined within the gestureExecutionlmplementation
and pepperKinematicsUTtilities, effectively managing the gesture execution operations.

The file structure of the gesture execution node in the cssr_system package is shown in Figure
6 below.

cssr_system
gestureExecution
| config
L,gestureExecutionConfiguration.ini

| data
gestureDescriptors.dat
1ArmWelcomeGestureDescriptors.dat
pepperTopics.dat
rArmWelcomeGestureDescriptors.dat
simulatorTopics.dat
waveGestureDescriptors.dat

| include
gestureExecution

gestureExecutionInterface.h
pepperKinematicsUtilitiesInterface.h

| launch

| _msg

Gesture.msqg

| _src

gestureExecutionApplication.cpp

gestureExecutionImplementation.cpp

pepperKinematicsUtilities.cpp

| _srv

L,perfornpgesture.srv

| README.md

| CMakelists.txt

Figure 6: File Structure for the Gesture Execution Node

Date: 06/01/2025
Version: No 1.1

Configuration File

The operation of the gestureExecution node is determined by the contents of the configuration file that
contains a list of key-value pairs as shown below.
The configuration file is named gestureExecutionConfiguration.ini

Table 2: Configuration file for the gesture execution node

Key Value Description

platform simulator or robot Specifies the platform on which the node is to be
run, i.e., the physical Pepper robot or the Pepper
simulator

interpolation linearorbiological Specifies the interpolation type. This indicates how the

joint angles that define the trajectory in joint space be-
tween the current joint angles and the gesture joint an-
gles are computed for body gesture and hand deictic
gestures and between waypoints for iconic and sym-
bolic gestures. The two options are: (a) independent
linear interpolation of each joint angle, and (b) biolog-
ical motion, selecting the sequence of joint angular ve-
locities and joint accelerations to form a trajectory in
time and joint space that mimics biological movement.

gestureDescriptors | gestureDescriptors.dat | Specifies the filename of the file in which the gesture de-
scriptors are stored. This file contains the information
about each iconic gesture descriptor, which includes the
ID, the arm to be used and the filename of the file con-
taining the descriptors for the gesture.

robotTopics robotTopics.dat Specifies the filename of the file in which the physical
Pepper robot sensor and actuator topic names are stored.
simulatorTopics simulatorTopics.dat Specifies the filename of the file in which the simulator
sensor and actuator topic names are stored.
verboseMode trueor false Specifies whether diagnostic data is to be printed to the
terminal.
Input File

There is no input data file for the gesture execution node. The gestures are executed based on the
service request provided by a client node.

Output Data File

There is no output data file for the gesture execution node. The result of the gesture execution is
returned as a response to the client that invoked the service and diagnostic messages are printed on
the screen, depending on the value of verboseMode key in the configuration file.

Topics File

For the node, a selected list of the topics for the robot and simulator is stored in the topics file. The
topic files are written in the .dat file format. The data file is written in key-value pairs where the key
is the actuator name and the value is the topic

The topics file for the robot is named robot Topics.dat and the topics file for the simulator is
named simulatorTopics.dat.

Date: 06/01/2025
Version: No 1.1

Topics Subscribed

This node subscribes to one topic, published by robotLocalization node, which provides the
pose of the robot.
Table 3 lists the topic to which the gestureExecut ion node subscribes.

Table 3: Topic Subscribed to by the gestureExecution node.

Topic Node Platform

/robotLocalization/pose | robotLocalization | Physical robot & simulator

Topics Published

Table 4 lists the topics to which the gestureExecution node publishes. These are specified in the
files identified by the robot Topics and simulatorTopics key-value pairs in the configuration
file.

Table 4: Topics Published by the gestureExecution node.

Topic Actuator Platform
/pepper_dcm/LeftArm_controller/ LShoulderPitch, LShoulderRoll, robot
follow_joint_trajectory LElbowYaw, LElbowRoll, LWristYaw
/pepper-dcm/RightArm_controller/ RShoulderPitch, RShoulderRoll, robot
follow_joint_trajectory RElbowYaw, RElbowRoll, RWristYaw
/pepper_dcm/LeftHand_controller/ Left Hand robot
follow_joint_trajectory

/pepper_dcm/RightHand_controller/ | Right Hand robot
follow_joint_trajectory

/pepper_-dcm/Pelvis_controller/ HipRoll, HipPitch, KneePitch robot
follow_joint_trajectory

/pepper_dcm/cmd_moveto Wheels robot
/pepper/LeftArm_controller/ LShoulderPitch, LShoulderRoll, simulator
follow_joint_trajectory LElbowYaw, LElbowRoll, LWristYaw
/pepper/RightArm_controller/ RShoulderPitch, RShoulderRoll, simulator
follow_joint_trajectory RElbowYaw, RElbowRoll
/pepper/Pelvis_controller/ HipRoll, HipPitch, KneePitch simulator

follow_joint_trajectory

/pepper/cmd_vel Wheels simulator

Date: 06/01/2025
Version: No 1.1

Services Supported

This node provides and advertizes a server for a service /gestureExecution/perform_gesture

to initiate the performance of a required gesture. It uses a package-specific msg, Gesture.msg. The
message has several fields, as follows:

Table 5: Fields in the Gesture .msg of the gestureExecution node.

Field Field Value Fleld Type | Units
gesture_type iconic, symbolic String

deictic, bow, nod
gesture_id <number> Integer
gesture_duration | <number> Integer milliseconds
bow_nod-angle <number> Integer degrees
location.x <number> Real metres
location.y <number> Real metres
location.z <number> Real metres

If the perform_gesture request is successful, the service response is “1”’; if it is unsuccessful,
it is “0”. The service is called by the script Interpreter node.
Table 6 summarizes the services supported.

Table 6: Service supported by the gestureExecution node.

Service

Message Value

Effect

/gestureExecution/perform_gesture

iconic, symbolic

deictic, bow,

nod | deictic, bow,

Perform an iconic,

symbolic,

or nod gesture

Services Called

This node calls the /overtAttention/set_mode service as shown in Table ??.

Table 7: Service called by the gestureExecution node.

Service

Message Value

Effect

/overtAttention/set_mode

mode ("location"), location._x

location.y, location.z

Invoke the attention subsystem to

look at a location in the world

The type of variable that is passed as an argument to the overtAttention/set_mode service
and the type of the service call return value is defined in D5.3 Overt Attention.

Date: 06/01/2025
Version: No 1.1

6 Executing the Gestures

The implementation of the gesture execution node on the Pepper robot is realized as a ROS service
/gestureExecution/perform gesture, which is hosted and can be called with specific pa-
rameters to request the execution of gestures. The service provides a flexible and convenient interface
for controlling the robot’s gestures, allowing for customization of gesture type, duration, angles of
bowing and nodding, as well as the target coordinate for pointing in the world.

The ROS service is invoked with the following parameters:

» Gesture Type: the type of gesture to be executed (e.g., deictic, iconic, bow, nod).

* Gesture ID: the ID of an iconic gesture to be executed (e.g., 01, 02, 03).

* Duration: the duration of the gesture, controlling the speed at which the gesture is performed.
* Angle of Bowing: the angle at which the robot should bow if the gesture is bowing.

* Angle of Nodding: the angle at which the robot should nod if the gesture is nodding.

» Target Coordinate: the target coordinate in the world that the robot should point to, if the gesture
is a deictic pointing gesture.

To run the node, the user must run the following command (after waking the robot):

rosrun cssr_system gestureExecution

After the node is run, the /gestureExecution/perform_gesture service is available and
can be invoked by running the following command:
rosservice call /gestureExecution/perform_gesture —— <gesture_type> <

gesture_id> <gesture_duration> <bow_nod_angle> <location_x> <
location_y> <location_z>

To execute a deictic gesture at a point x_p, y.p, z_p for T ms, the user must invoke the ser-
vice with the command below (replacing the duration and the pointing coordinates with the actual
coordinates):

rosservice call /gestureExecution/perform_gesture —- \
deictic 01 T 0 x_ p V. p z_p

To execute an iconic gesture with gesture ID gesture_id for T ms, the user must invoke the
service with the command below (replacing the duration and the gesture ID placeholder with the actual
parameters):

rosservice call /gestureExecution/perform_gesture —— \
iconic gesture_id T 0 0 0 O

To execute a bow gesture at theta_degrees for T ms, the user must invoke the service with
the command below (replacing the duration and the bow angle placeholder with the actual bow angle):

rosservice call /gestureExecution/perform_gesture —— \
bow 01 T theta_degrees 0 0 O

To execute a nod gesture at theta_degrees for T ms, the user must invoke the service with
the command below (replacing the duration and the nod angle placeholder with the actual nod angle):

rosservice call /gestureExecution/perform_gesture —-- \
bow 01 T theta_degrees 0 0 O

Date: 06/01/2025
Version: No 1.1

For executing gestures on the physical robot, the NAOqi DCM (Device Communication Manager)
driver is used to control the robot’s actuators. The driver provides a hardware interface to connect to
Alderban’s robot Nao, Romeo, and Pepper robots. The module is designed to move the joint actuator
of the robot to a specified position by defining the trajectory goal and sending it to a control server via
a ROS topic.

First, the module initializes a client for interacting with the ROS actions server. The function is a
structured attempt to establish a connection with the server. The connection to the server is attempted
multiple times before giving up and throwing an error. The function
ControlClientPtr create_client (const std::string& topic-name) takes in the tOpiC name and
returns the actionClient pointer.

After the client is created, the module commands the robot to move to a specified position by
defining a trajectory goal and sending it to the control server via the ROS action client. First, the
module defines a goal message for a joint trajectory action, which is part of the control msgs
package. The follow_joint_trajectory action is used to generate a more complex motion
control mechanism, often used for executing predefined paths or trajectories for a set of joints.

The components of this topic include:

* /goal: used to send a “FollowJointTrajectoryGoal”, which includes a trajectory comprising
multiple points (position, velocities, acceleration, and/or efforts for each joint) and the time at
which those points should be reached.

* /cancel: can cancel a currently executing trajectory.
* /feedback: provides real-time feedback about the current state of the trajectory execution.
* /result: provides the outcome of the trajectory execution after completion.

* /status: provides status information about the goal, such as if it’s active, succeeded, or
aborted

The trajectory goal is sent to the action server through the client. The server, presumably a part of
a motion control system, interprets this goal and commands the robot arm to move accordingly. The
system then waits for a fixed duration for the movement to complete before proceeding.

Date: 06/01/2025
Version: No 1.1

7 Unit Tests

To start the unit tests, the user must first install the necessary software packages as outlined in Deliv-
erable D3.3. The operation of the unit test is controlled by a configuration file
gestureExecutionTestConfiguration.ini which contain key-value pairs required to ex-
ecute the unit tests as shown below.

Table 8: Configuration file for the gesture execution unit tests node

Key Value Description

platform simulator or robot | Specifies the platform on which the node is to be
run, i.e., the physical Pepper robot or the Pepper
simulator

iconic true or false Specifies whether to run the iconic gestures test

deictic trueor false Specifies whether to run the deictic gestures test

bow trueor false Specifies whether to run the bow gestures test

nod trueor false Specifies whether to run the nod gestures test

verboseMode | trueor false Specifies whether diagnostic data is to be printed
to the terminal.

Referring to Table 8 above, the user must set the platform to be tested, and specify which gestures
to test using the key-value pairs, with the gesture type (deictic, iconic, bow and nod) as the
key and the status (True or False) as the value. To launch the gesture execution test, the user must
run the following command:

Launch the Gesture Execution Unit Test for the physical robot
roslaunch unit_tests gestureExecutionTestLaunchRobot.launch \
robot_ip:=<robot_ip> roscore_ip:=<roscore_ip> \
network_interface:=<network_interface>

Launch the Gesture Execution Unit Test for the simulator
roslaunch unit_tests gestureExecutionTestLaunchSimulator.launch

The above command will launch the test for the robot and simulator respectively. The unit tests
wake up the robot, launch the gesture execution node (to make the
gestureExecution/perform_gesture service available), launch a driver for the robotlLocal-
ization node (to publish random poses of the robot) and launch a stub for the
/overtAttention/set_mode service which randomly returns success or failure when the ges-
ture execution node invokes the service. Based on the status of the gesture being executed, this result
is saved in a file gestureExecutionTestOutput .dat. This file stores the input requirement
for each gesture and the status of the gesture (either Success or Failure).

Date: 06/01/2025
Version: No 1.1

https://cssr4africa.github.io/deliverables/CSSR4Africa_Deliverable_D3.3.pdf
https://cssr4africa.github.io/deliverables/CSSR4Africa_Deliverable_D3.3.pdf

Principal Contributors

The main authors of this deliverable are as follows (in alphabetical order).

Adedayo Akinade, Carnegie Mellon University Africa.
David Vernon, Carnegie Mellon University Africa.

Date: 06/01/2025
Version: No 1.1

Document History

Version 1.0
First draft.
Adedayo Akinade.
10 October 2024

Version 1.1
Renumbered to D5.5.1.1 to facilitate an additional deliverable for Task 5.5.1: D5.5.1.2 Pro-
gramming by Demonstration.
David Vernon.
6 January 2025.

Date: 06/01/2025
Version: No 1.1

	Executive Summary
	Introduction
	Requirements Definition
	Module Specification
	Module Design
	Deictic Gestures
	Iconic and Symbolic Gestures
	Bow Gestures
	Nod Gestures

	Implementation
	Executing the Gestures
	Unit Tests
	References
	Principal Contributors
	Document History

