
Culturally Sensitive Social Robotics
for Africa

D5.4.3 Robot Mission Interpreter

Due date: 31/12/2024
Submission Date: 16/12/2024

Revision Date: 24/01/2025

Start date of project: 01/07/2023 Duration: 36 months

Lead organisation for this deliverable: The University of the Witwatersrand

Responsible Person: Tsegazeab Tefferi, CMU-Africa Revision: 1.2

Project funded by the African Engineering and Technology Network (Afretec)
Inclusive Digital Transformation Research Grant Programme

Dissemination Level
PU Public PU
PP Restricted to other programme participants (including Afretec Administration)
RE Restricted to a group specified by the consortium (including Afretec Administration)
CO Confidential, only for members of the consortium (including Afretec Administration)

D5.4.3 Robot Mission Interpreter

Contents

1 Introduction 5

2 Requirements Definition 7

3 Module Design 8
3.1 Dependencies . 9

3.1.1 BehaviorTree.CPP . 9
3.2 Mission Execution . 11

3.2.1 The initializeTree function . 11
3.2.2 Blackboard . 12
3.2.3 Custom Action and Condition Nodes 12
3.2.4 HandleFallBack Action Node . 13
3.2.5 Data Specifications . 13

4 Implementation 15
4.1 File Organization . 15

4.1.1 External Dependencies . 16
4.1.2 Main Source Files . 16
4.1.3 Configuration Files . 16
4.1.4 Robot Mission Specifications . 16
4.1.5 Service Definition Files . 16
4.1.6 Message Definition Files . 17
4.1.7 Package Relevant Files . 17

4.2 Configuration File . 18
4.3 Input File . 18
4.4 Output File . 18
4.5 Topics File . 18
4.6 Topics Subscribed . 19
4.7 Topics Published . 19
4.8 Services Supported . 19
4.9 Services Called . 20
4.10 Robot Mission Nodes . 21

5 Executing Missions 27
5.1 Prerequisites . 27
5.2 Execution Process . 27
5.3 Switching Missions . 27

6 Unit Tests 28
6.1 Test Configuration . 28
6.2 Launching Tests . 28

References 29

Date: 24/01/2025
Version: No 1.2

Page 2

D5.4.3 Robot Mission Interpreter

Principal Contributors 30

Document History 31

Date: 24/01/2025
Version: No 1.2

Page 3

D5.4.3 Robot Mission Interpreter

Executive Summary

Deliverable D5.4.3 focuses on the development of the Robot Mission Interpreter
module, a central component within the CSSR4Africa software architecture. This mod-
ule, also referred to as behaviorController ROS node, serves as the orchestrator for
interpreting and executing robot mission specifications defined in Task 5.4.2, effectively
bridging high-level mission planning with low-level robot execution. By leveraging the
BehaviorTree.CPP library, the behaviorController node interprets XML-based mis-
sion scripts.

The Robot Mission Interpreter integrates seamlessly with nine distinct ROS nodes,
including animateBehavior, overtAttention, gestureExecution, textToSpeech,
robotNavigation, knowledgeBase, tabletEvent, speechEvent, and faceDetection.
These interactions are facilitated through ROS service calls and publish-subscribe mech-
anisms, allowing the module to control behaviors such as animating lifelike patterns,
executing gestures, navigating environments, processing speech inputs, and detecting
human presence. This comprehensive integration ensures that the robot can effectively
engage with its environment and perform mission-critical tasks.

The development process encompasses a structured software engineering methodol-
ogy, including requirements definition, module design, coded implementation, and unit
testing, all adhering to the standards outlined in Deliverable D3.2.

In the work plan, this deliverable is assigned to the University of the Witswatersrand.
However, the material in this version was developed and written by Carnegnie Mellon
University Africa. This was necessary because the Wits version was not available and,
without it, it is not possible to build a complete, operational system and demonstrate
the required CSSR4Africa functionality.

Date: 24/01/2025
Version: No 1.2

Page 4

D5.4.3 Robot Mission Interpreter

1 Introduction

This document describes the development and implementation of a ROS node for the
execution of robot missions on the Pepper robot. The Robot Mission Interpreter func-
tions as a central ROS node within the CSSR4Africa software architecture, orchestrating
system behavior through ROS service calls and publish-subscribe mechanisms. It per-
forms two key functions translating Robot Mission Specifications into executable robot
commands, and processing real-time sensor data and status updates from other ROS
nodes to guide robot behavior.

behaviorController

animateBehavior

overtAttention

gestureExecution

textToSpeech

faceDetection

knowledgeBase

tabletEvent

speechEvent

robotNavigation

Figure 1: Interaction Diagram of the Robot Mission Interpreter Node with other ROS
Nodes

Figure 1 illustrates the communication architecture of the Robot Mission Interpreter.
The central node, shown in red, coordinates with nine peripheral ROS nodes shown in
orange. The bidirectional communication is represented by arrows: solid arrows indicate
service call from the interpreter to the nodes, while dashed arrows topic messages sent
from the nodes to the interpreter.

This deliverable presents a comprehensive report detailing each phase of the software
development lifecycle for the Robot Mission Interpreter module. Section 2 outlines the
requirements definition process, aligning functional necessities with the project’s overar-
ching goals, thereby establishing the foundation for subsequent development efforts.

Date: 24/01/2025
Version: No 1.2

Page 5

D5.4.3 Robot Mission Interpreter

Section 3 delves into the module design, documenting the module’s dependencies—including
the BehaviorTree.CPP library—and the mission execution framework. Subsections
within this section provide detailed insights into critical components such as the initializeTree
function (3.2.1), the Blackboard mechanism (3.2.2), custom Action and Condition Nodes
(3.2.3), and the HandleFallback Action Node (3.2.4). The interface design is addressed
with a focus on data exchange mechanisms utilizing ROS middleware and file input/out-
put operations.

Section 4 describes the implementation of the module, including file organization and
the configuration of various essential files. This includes external dependencies (4.1.1),
main source files (4.1.2), configuration files (4.1.3), robot mission specifications (4.1.4),
service definition files (4.1.5), message definition files (4.1.6), and package relevant files
(4.1.7). Further details on the configuration file (4.2), input file (4.3), output file (4.4),
topics file (4.5), topics subscribed (4.6), topics published (4.7), services supported (4.8),
services called (4.9), and robot mission nodes (4.10) are provided to ensure a clear
understanding of the module’s operational setup.

Section 5 focuses on executing missions, detailing the prerequisites (5.1), the execu-
tion process (5.2), and the procedures for switching missions (5.3). Finally, Section 6
outlines the unit testing strategies, covering test configuration (6.1) and the launching
of tests (6.2), ensuring the reliability and accuracy of the module’s functionalities.

Date: 24/01/2025
Version: No 1.2

Page 6

D5.4.3 Robot Mission Interpreter

2 Requirements Definition

The behaviorController node is a vital component of the CSSR4Africa software sys-
tem, responsible for interpreting robot mission specifications developed in Task 5.4.2 by
implementing the use case scenarios outlined in Deliverable D2.1: User Case Scenario
Definition. This deliverable is essential for identifying and addressing specific user ex-
pectations, ensuring that the node can accurately interpret and execute diverse mission
scenarios across various operational environments, including both the physical robot and
the simulator.

At its core, the behaviorController must proficiently parse mission specifications
from a file written in the custom script language defined in Deliverable D5.4.2, compre-
hending both syntax and semantics to extract meaningful instructions that dictate robot
behaviors. It must orchestrate complex interaction dynamics between the robot and vis-
itors, faithfully executing all defined behaviors and interaction protocols as specified in
Deliverable D5.4.2.

The node must interact seamlessly with various CSSR4Africa modules to perform
tasks and process relevant information. To achieve this, it must communicate with nine
different nodes by subscribing to three topics and making service calls to seven servers.
These interactions enable functionalities such as animating behaviors, executing gestures,
querying knowledge, controlling navigation, managing overt attention mechanisms, and
initiating and processing interactions with humans.

The module must operate in two distinct modes: normal and verbose. In normal
mode, the module executes mission scenarios without additional logging. In contrast,
verbose mode allows the module to provide detailed information by printing logs to the
terminal, which is invaluable for debugging and monitoring purposes. Additionally, the
module must function with Automatic Speech Recognition (ASR) either enabled or dis-
abled. When ASR is enabled, the module must processes human speech to facilitate
audio-based interactions. When disabled, interactions must be managed through touch
or physical inputs via the robot’s tablet, allowing for alternative methods of communi-
cation.

Furthermore, the module must ensure robustness and reliability in mission execu-
tion by continuously monitoring the performance of nodes it communicates with and
initiate fallback behaviors when necessary. It must employ error detection and recovery
mechanisms to gracefully handle errors, service call failures, and unexpected behaviors,
thereby maintaining system stability.

Date: 24/01/2025
Version: No 1.2

Page 7

D5.4.3 Robot Mission Interpreter

3 Module Design

The Robot Mission Interpreter module serves as the central orchestrator of the CSSR4Africa
software architecture. It processes robot mission specifications defined in Task 5.4.2,
interpreting and executing each action and condition node within the specification. Op-
erating as a mission coordinator, it combines XML-based mission specifications with
real-time inputs from other nodes, executing custom internal logic for each action and
condition node to generate appropriate control commands.

As the primary control node of the system, it acts as the coordination layer between
high-level mission planning and low-level robot execution. Operating within the ROS
framework, this module interfaces with other nodes in the CSSR4Africa software package
through ROS service calls and publish-subscribe mechanisms. It maintains active com-
munication channels with nine different nodes, orchestrating their operations to achieve
the specified mission objectives by executing various robot behaviors.

1. animateBehavior: Triggers the execution of life-like behavioral patterns to foster
human-robot interaction

2. overtAttention: Initiates the robot’s attention system to focus on specific envi-
ronmental features or locations relevant to social interaction

3. gestureExecution: Initiates specific body and hand gestures through the robot’s
motion control system

4. textToSpeech: Commands the robot to deliver verbal messages through its speech
synthesis system

5. robotNavigation: Directs the robot’s movement system to navigate to specified
locations or follow predetermined paths

6. knowledgeBase: Retrieves contextual information needed for decision-making dur-
ing mission execution

7. tabletEvent: Triggers the display of contextually appropriate interaction menus
on the robot’s tablet interface

8. speechEvent: Activates speech recognition processes to capture and process hu-
man verbal inputs

9. faceDetection: Initiates facial detection and tracking processes to maintain aware-
ness of human presence

Date: 24/01/2025
Version: No 1.2

Page 8

D5.4.3 Robot Mission Interpreter

The behaviorController node operates in two distinct modes: normal and ver-
bose. In normal mode, the module executes mission scenarios with minimal output.
In verbose mode, it provides comprehensive logging information to the terminal, facil-
itating debugging and system monitoring. The module also supports two interaction
modes based on Automatic Speech Recognition (ASR) configuration. With ASR en-
abled, the module can process verbal commands through speech recognition. With
ASR disabled, the module relies on the robot’s tablet interface for touch-based in-
teractions and physical inputs. These operational modes are configured through the
behaviorControllerConfiguration.ini file.

3.1 Dependencies

The behaviorController node has the following external dependencies that are es-
sential for its core functionality. These dependencies provide fundamental capabilities
required for proper operation of the module and must be properly configured during
setup.

3.1.1 BehaviorTree.CPP

BehaviorTree.CPP is an open-source C++ library designed to implement, read, and
execute behavior trees. It utilizes an external Domain-Specific Language (DSL) instead
of an internal one, as internal DSLs can hinder the maintainability and analyzability of
the behavior model in the long term [1]. The library employs template metaprogramming
instead of code generation, which provides a degree of type safety when implementing
custom tree nodes without requiring users to engage with specialized code-generation
tools, making the library feel akin to using a regular C++ library [2].

Trees in BehaviorTree.CPP are defined using a Domain-Specific scripting language
based on XML, allowing them to be loaded at run-time; this means that even if the
trees are written in C++, their morphology is not hard-coded, offering greater flexibility
[3]. They can be created using any text editor, but this library provides a user-friendly
graphical editor called Groot [4]. A more detailed description of how the robot mission
specifications are developed is explained in D5.4.2 Robot Mission Language.

BehaviorTree.CPP was one of only two libraries out of 18 surveyed to have ROS
support, be open-source, have a GUI tool to design missions, and be written in C++ [5].
It is popular, with 3.1k stars on GitHub, and the repository remains actively maintained
with continuous contributions and updates as of December 15, 2024 [6]. It is currently
being used in essential ROS2 packages, such as the Nav2 navigation stack [7]. Version
4.0 of the software was released in October of 2022 and was presented at ROSCon 2022
in Japan [8].

The behaviorController node was built by importing the fundamental components
from this library, including the core behavior tree types, the XML parsing functionality
for loading tree specifications at runtime, and the tree execution engine. This dependency
provides all the necessary building blocks for constructing and executing behavior trees

Date: 24/01/2025
Version: No 1.2

Page 9

D5.4.3 Robot Mission Interpreter

while allowing the mission interpreter to focus on implementing the specific behaviors
and actions.

Date: 24/01/2025
Version: No 1.2

Page 10

D5.4.3 Robot Mission Interpreter

3.2 Mission Execution

The mission execution process is the core functionality of the behaviorController
node. It involves the interpretation and execution of robot mission specifications defined
in XML format. The mission execution process is possible by the use of several key
components, each of which plays a crucial role in ensuring the successful execution of
the mission.

3.2.1 The initializeTree function

The function BT::Tree initializeTree(std::string missionSpecification) is re-
sponsible for preparing the behavior tree for execution based on the robot mission spec-
ification given in XML format. It performs three critical steps:

1. File Loading: The function accepts a mission specification name as input and
constructs the full file path by appending a ’.xml’ extension and locating it in the
module’s data directory.

2. Node Registration: Before the tree can be created, all custom Action and Con-
dition nodes that will be used in the mission must be registered with the behavior
tree factory. This is accomplished using the template function:

template <typename T, typename... ExtraArgs>
void registerNodeType(const std::string& ID, ExtraArgs... args)

This registration step is crucial - if the XML specification references a node type
that hasn’t been properly registered, the behaviorController will encounter a
fatal error when the tree’s execution reaches that node.

3. Tree Creation: Finally, the function uses BehaviorTree.CPP’s factory method:

BT::Tree BehaviorTreeFactory::createTreeFromFile(
const std::filesystem::path& file_path)

to parse the XML specification and construct an executable behavior tree. This
factory method handles the creation of all nodes, establishes their connections
according to the XML structure, and returns a fully initialized BT::Tree object
ready for execution.

Date: 24/01/2025
Version: No 1.2

Page 11

D5.4.3 Robot Mission Interpreter

3.2.2 Blackboard

The Blackboard serves as a centralized key/value storage mechanism that facilitates data
sharing across all nodes within a Behavior Tree [3]. It provides two essential functions
in the module.

First, it enables information sharing between different nodes executing within the
same behavior tree. This is crucial for coordinating actions and maintaining state across
different branches of the tree.

Second, since action and condition nodes have limited lifespans that end after their
execution, the Blackboard acts as a persistent storage solution. Any data that needs
to survive beyond a node’s execution cycle must be stored in the Blackboard for future
access.

An important point to note is that the Blackboard doesn’t need to be explicitly
created- it’s automatically instantiated during tree initialization. Each action and con-
dition node has access to it through the config object.

3.2.3 Custom Action and Condition Nodes

In a robot mission specification implemented using behavior trees, the composite nodes
(Control Nodes and Decorator nodes) are provided by the BehaviorTree.CPP library.
Custom implementations are necessary exclusively for Leaf Nodes, which consist of Ac-
tion and Condition nodes.

Class Definition Each Leaf Node is implemented as a C++ class that inherits from
either BT::SyncActionNode or BT::ConditionNode, depending on whether it represents
an Action or a Condition node. The class definition includes the following components:

1. Constructor The constructor for an Action node follows the BT::SyncActionNode(const
std::string& name, const NodeConfig& config) signature, while that for a Condi-
tion node follows the BT::ConditionNode(const std::string& name, const NodeConfig&
config) signature. During initialization, the constructor sets up necessary ROS compo-
nents, such as service clients and topic subscribers, to facilitate the node’s functionality.

2. Tick Method

BT::NodeStatus tick()

The tick() method encapsulates the core logic of each Leaf Node and is invoked
during behavior tree traversal. Serving as the primary execution method for both Ac-
tion and Condition nodes, tick() performs the node’s specific functionality, which may
include modifying Blackboard values, making service calls to CSSR4Africa ROS nodes,
or executing custom actions based on messages received from subscribed topics.

This method returns one of three possible states:

• BT::NodeStatus::SUCCESS: Execution completed successfully.

Date: 24/01/2025
Version: No 1.2

Page 12

D5.4.3 Robot Mission Interpreter

• BT::NodeStatus::FAILURE: Execution failed.

• BT::NodeStatus::RUNNING: Execution is ongoing (applicable only to Action nodes).

3. Private Section The private section contains:

• Class member variables shared between the constructor and the tick() method.

• Callback methods for handling topic subscriptions.

• Other implementation-specific private members essential for the node’s operation.

3.2.4 HandleFallBack Action Node

The HandleFallback action node is an important component within the behaviorController,
that must be able to manage error recovery mechanisms when preceding actions en-
counter failures. Although its logic is not yet implemented, the HandleFallback node
is intended to provide robust fallback strategies to ensure mission continuity and sys-
tem resilience. Upon activation, typically triggered by a failure in a prior action node,
HandleFallback will assess the nature of the failure and determine the appropriate re-
covery approach. This can involve executing a default recovery procedure that attempts
to restore the system to a safe or initial state or invoking a custom, action-specific
recovery function tailored to address the specific failure context.

Work is currently in progress to identify a suitable recovery strategy for the HandleFallback
node that can ensure that it can effectively manage a wide range of failure scenarios and
maintain mission integrity under adverse conditions.

3.2.5 Data Specifications

The behaviorController is expected to ingest data from multiple sources, with the
Knowledge Base being one of its primary inputs. To effectively manage and utilize
the external data supplied by the Knowledge Base, specific data specifications were
defined, tailored predominantly for the “Lab Tour” scenario,described in D2.1 Use
Case Scenario. These specifications include:

• Exhibit Information: Defined using ExhibitInfo, this encompasses detailed
data regarding various exhibits within the “Lab Tour” scenario environment, as
well as the definition of the lab’s entrance and exit. It includes exhibit names,
descriptions, and locations.

• Robot Home Location: Defined using Location, this provides coordinates and
positioning information for the Pepper robot’s designated home location

The following code snippet illustrates the data structures used to represent the these
specifications:

Date: 24/01/2025
Version: No 1.2

Page 13

D5.4.3 Robot Mission Interpreter

s t r u c t Locat ion
{

f l o a t x ;
f l o a t y ;
f l o a t theta ;

} ;

s t r u c t Gesture
{

f l o a t x ;
f l o a t y ;
f l o a t z ;

} ;
s t r u c t Exh ib i t In f o
{

std : : s t r i n g name ;
std : : s t r i n g d e s c r i p t i o n 1 ;
std : : s t r i n g d e s c r i p t i o n 2 ;
Locat ion l o c a t i o n ;
Gesture ge s tu r e ;

} ;

These specifications ensure that the behaviorController can accurately interpret
and utilize the data retrieved from the Knowledge Base to execute the mission effectively.

Date: 24/01/2025
Version: No 1.2

Page 14

D5.4.3 Robot Mission Interpreter

4 Implementation

4.1 File Organization

The behaviorController node’s codebase is organized into two primary components:
the external dependency BehaviorTree.CPP and the core behaviorController mod-
ule. The behaviorController module follows a standard ROS package structure with
dedicated directories for configuration files, mission data, service definitions, message
specifications, and build configurations.

BehaviorTree.CPP
..

behavior controller
config

behaviorControllerConfiguration.ini
data

lab tour.xml
include

behaviorController
behaviorControllerInterface.h

launch
msg

faceDetectionMessage.msg
overtAttentionMessage.msg

srv
animateBehaiorService.srv
gestureExecutionService.srv
knowledgeBaseService.srv
overtAttentionService.srv
robotNavigationService.srv
textService.srv

src
behaviorControllerImplementation.cpp
behaviorControllerApplication.cpp

README.md
CMakeLists.txt
package.xml

Date: 24/01/2025
Version: No 1.2

Page 15

D5.4.3 Robot Mission Interpreter

4.1.1 External Dependencies

• BehaviorTree.CPP: This directory houses the source code for the external Behav-
iorTree.CPP library, an essential dependency for the behaviorController node.
Including the library’s source code directly alongside the module ensures seamless
integration and distribution, allowing for the use of the module right from the get
go without having to install the library separately.

4.1.2 Main Source Files

• include/behaviorController/behaviorControllerInterface.h: Header file defin-
ing the public interfaces and abstract classes for the interpreter, facilitating com-
munication between different components.

• src/behaviorControllerImplementation.cpp: The primary source file contain-
ing the core implementation of the Robot Mission Interpreter. This file encom-
passes the behavior tree initialization, node registration system, action and condi-
tion node implementations, and all other custom made minor functionalities.

• src/behaviorControllerApplication.cpp: Source file serving as the entry point
for the node, initializing the ROS node, loading configurations, and managing the
execution flow.

4.1.3 Configuration Files

• config/behaviorControllerConfiguration.ini: Main configuration file speci-
fying operational parameters, mode settings (normal or verbose), and other neces-
sary configurations for the interpreter.

4.1.4 Robot Mission Specifications

• data/lab tour.xml: Scenario script file written in the custom script language,
detailing the interaction dynamics for a specific use case scenario, in this case the
“Lab Tour” scenario, described in D2.1 Use Case Scenario.

4.1.5 Service Definition Files

Located in srv/ directory, the service definition files are as follows:

• animateBehaviorService.srv: service definition for animateBehavior/set activation
server

• gestureExecutionService.srv: service definition for gestureExecution/perform gesture
server

• knowledgeBaseService.srv: service definition file for knowledgeBase/query server

Date: 24/01/2025
Version: No 1.2

Page 16

D5.4.3 Robot Mission Interpreter

• robotNavigationService.srv: service definition file for robotNavigation/set goal
server

• overtAttentionService.srv: service definition file for overtAttention/set mode
server

• textService.srv: service definition file for textToSpeech/say text and tabletEvent/prompt and get
response servers. It’s a generic “string”service file definition and can be used for
any server that only requires a string input.

4.1.6 Message Definition Files

Located in msg/ directory, the message definition files are as follows:

• faceDetectionMessage.msg: Message definition for /faceDetection/data topic.

• overtAttentionMessage.msg: Message definition for /overtAttention/mode topic.

4.1.7 Package Relevant Files

• README.md: Documentation file providing an overview of the behaviorController
node, setup instructions, usage guidelines, and other relevant information for de-
velopers and users.

• CMakeLists.txt: Build configuration file specifying dependencies, include direc-
tories, and compilation instructions necessary to build the behaviorController
node within the ROS workspace.

• package.xml: ROS package manifest detailing package metadata, dependencies
on other ROS packages, and other essential information required for package man-
agement and integration within the ROS ecosystem.

Date: 24/01/2025
Version: No 1.2

Page 17

D5.4.3 Robot Mission Interpreter

4.2 Configuration File

The operation of the behaviorController node is determined by the contents of the con-
figuration file that contains a list of key-value pairs as shown below. The configuration
file is named behaviorController.ini

Table 1: Configuration Parameters for the Robot Mission Interpreter Node

Key Value Description
scenarioSpecification <scenario specification> Specifies the name of the scenario. The node

will look for an xml file, excluding extension,
with that name from the data folder.

verboseMode true or false Specifies whether diagnostic data is to be
printed to the terminal.

asrEnabled true or false Specifies whether Automatic Speech Recogni-
tion is enabled on the platform or not.

4.3 Input File

The scenarioSpecification defined in the configuration file serves as the sole input
to this node. This file must contain a robot mission specification in XML format that
adheres to the Groot2 output structure, as detailed in Deliverable 5.4.2. Any deviation
from this format will cause the behaviorController node to fail during initialization
when parsing the specification.

4.4 Output File

There is no output data file for the behaviorController node. The result of the execution
of each action and condition node is outputted as a diagnostic messages on the screen,
depending on the value of verboseMode key in the configuration file. Additionally, the
Groot2 IDE can also be connected to the behaviorController node and status of the
mission and of each node displayed in its user interface.

4.5 Topics File

There are no topic files for the behaviorController node.

Date: 24/01/2025
Version: No 1.2

Page 18

D5.4.3 Robot Mission Interpreter

4.6 Topics Subscribed

This node subscribes to the following 3 topics listed in the table. The table describes
the topics subscribed, the format of the messages published by the respective node, the
description of that message and the deliverable within which there is further explanation
of the type of variable used.

Table 2: Topics Subscribed by the Robot Mission Interpreter

Topic Message Format Description Deliverable
/faceDetection/data face label id,

centroids, mutualGaze
Contains data regarding the de-
tected faces and eyes in the field
of view of the robot.

D4.2.2

/overtAttention/mode state, value Contains the currently set mode
and additional status of the
“seeking”mode. The value is
only relevant if the mode is ’seek-
ing’.

D5.3

/speechEvent/text detected text Contains the transcriptions of
the utterances detected by the
Speech Event node.

D4.3.2

4.7 Topics Published

This node doesn’t publish any topics.

4.8 Services Supported

This node doesn’t provide or advertise any server for any service.

Date: 24/01/2025
Version: No 1.2

Page 19

D5.4.3 Robot Mission Interpreter

4.9 Services Called

The node interacts with the services detailed in the table below. Each entry specifies
the service name, the message format required, the expected effects or observations, and
references to the corresponding deliverables that provide comprehensive explanations of
the arguments passed and the return values from each service call.

Table 3: Service Messages and Their Effects

Service Message Format Effect Deliverable
animateBehaviour/set activation state Enable or Disable the

Animate Behavior mecha-
nism.

D5.2

gestureExecution/perform gesture gesture type,
gesture id,
gesture duration,
bow nod angle,
location x,
location y,
location z

Invokes the gesture sub-
system to perform a type
of gesture with specified
coordinates. The coordi-
nates are only necessary if
the gesture type is ’deic-
tic’.

D5.5.1

knowledgeBase/query parameters Extracts the specific
knowledge specified in
the parameters from the
knowledge base.

D5.4.1

overtAttention/set mode state,
location x,
location y,
location z

Sets the mode of atten-
tion for the Overt Atten-
tion node to follow.

D5.3

robotNavigation/set goal goal x, goal y,
goal theta

Invokes the navigation
subsystem to move to the
specified coordinates.

D5.5.4

tabletEvent/prompt and get response message Sends the text to be
printed as a message on
the Tablet.

D4.3.1

textToSpeech/say text message Sends the text to be con-
verted to an audio signal
and played on the robot’s
loudspeakers.

D5.5.2.4

Date: 24/01/2025
Version: No 1.2

Page 20

D5.4.3 Robot Mission Interpreter

4.10 Robot Mission Nodes

A total of 32 action and condition nodes have been developed for the behaviorController
module. These custom nodes are comprehensively listed in Table 4. The table provides
the following details for each:

• Name: The identifier of the node.

• Type: Specifies whether the node is an action or a condition.

• Description: A brief overview of the node’s functionality.

• Subscribed Topic: The topic to which the node subscribes.

• Service Called: The service that the node invokes.

While these nodes were crafted with the “Lab Tour scenario” in mind, described
in D2.1 Use Case Scenario, they are designed to be modular and highly reusable
across various missions. With a few exceptions, these nodes can be seamlessly inte-
grated into different mission scenarios by supplying a different mission specification as
input to the interpreter, by modifing the configuration file. This modularity ensures
that the behavior tree remains flexible and scalable, allowing for efficient adaptation
to diverse operational requirements without necessitating extensive reconfiguration or
redevelopment of existing nodes.

Date: 24/01/2025
Version: No 1.2

Page 21

D
5.4.3

RobotM
ission

Interpreter
Table 4: Implemented Mission Nodes

Node Type Description Topic Subscribed Service Called
DescribeExhibitSpeech Action Sends the description of

the current exhibit to the
textToSpeech ROS node.

None /textToSpeech/say text

DisableAnimateBehavior Action Sets the animate pa-
rameter ’state’ to
’disabled’ and sends it
to the animateBehavior
ROS node.

None /animateBehavior/set activation

DisabledOvertAttentionMode Action Sets the attention pa-
rameter ’state’ to
’disabled’ and sends it
to the overtAttention
ROS node.

None /overtAttention/set mode

EnableAnimateBehavior Action Sets the animate pa-
rameter ’state’ to
’enabled’ and sends it
to the animateBehavior
ROS node.

None /animateBehavior/set activation

EndTourSpeech Action Sends the description of
the current exhibit to the
textToSpeech ROS node.

None /textToSpeech/say text

FollowMeSpeech Action Sends the ’follow
me’ message to the
textToSpeech ROS node.

None /textToSpeech/say text

GoodbyeGesture Action Sends the ’goodbye’
gesture parameters to the
gestureExecution
ROS node. The
’gesture type’ parame-
ter is set to ’iconic’.

None /gestureExecution/perform gesture

D
ate:

24/01/2025
Version:

N
o

1.2
Page

22

D
5.4.3

RobotM
ission

Interpreter
Node Type Description Topic Subscribed Service Called
HandleFallBack Action A generic node used to

handle scenarios when an
Action node returns a fail-
ure. Its functionality is
currently undefined.

None None

HereIsTheDoorSpeech Action Sends the ’here is the
door’ message to the
textToSpeech ROS node.

None /textToSpeech/say text

IsASREnabled Condition Checks the preset value
from the configuration to
determine if Automatic
Speech Recognition is en-
abled.

None None

IsListWithExhibit Condition Checks if there is an ex-
hibit that has not yet been
visited.

None None

IsMutualGazeDiscovered Condition Checks if the
overtAttention ROS
node is publishing
’seeking’ for the
’state’ and ’1’ for
the ’value’ parameters,
respectively.

/overtAttention/mode None

IsVisitorDiscovered Condition Checks if the
faceDetection ROS
node is publishing an
empty set or a set
containing values.

/faceDetection/data None

IsVisitorResponseYes Condition Checks if the visitor re-
sponse value is ’Yes’ or
’No’ by retrieving it from
the Blackboard.

None None

D
ate:

24/01/2025
Version:

N
o

1.2
Page

23

D
5.4.3

RobotM
ission

Interpreter
Node Type Description Topic Subscribed Service Called
IsYesNoUttered Condition Checks if an affirmative

response is being pub-
lished by the Speech Node
and then stores the value
in the Blackboard.

/speechEvent/text None

LookUpEntrance Action Retrieves the coordinates
of ’Entrance’ from the
knowledgeBase ROS
node and stores the value
in the Blackboard.

None /knowledgebase/query

LookUpHome Action Retrieves the coordi-
nates of ’Home’ from
the knowledgeBase ROS
node and stores the value
in the Blackboard.

None /knowledgebase/query

MaybeAnotherTimeSpeech Action Sends the ’maybe
another time’ mes-
sage to the textToSpeech
ROS node.

None /textToSpeech/say text

Navigate Action Sends the coordinates
to be navigated towards
to the robotNavigation
ROS node.

None /robotNavigation/set goal

PerformDeicticGesture Action Retrieves the coordinate
values for the current
gesture from the Black-
board and sends them to
the gestureExecution
ROS node. The
’gesture type’ parame-
ter is set to ’deictic’ by
default.

None /gestureExecution/perform gesture

D
ate:

24/01/2025
Version:

N
o

1.2
Page

24

D
5.4.3

RobotM
ission

Interpreter
Node Type Description Topic Subscribed Service Called
PressYesNoDialogue Action Sends a message to the

tabletEvent ROS node
to initiate a ’Yes/No’
dialogue on the robot’s
tablet. It then stores
the response in the Black-
board.

None /tabletEvent/prompt and get response

PressYesNoSpeech Action Sends the ’press yes
or no’ message to the
textToSpeech ROS node.

None /textToSpeech/say text

QueryTourSpeech Action Sends the ’would you
like a tour’ message to
the textToSpeech ROS
node.

None /textToSpeech/say text

RetrieveListOfExhibits Action Retrieves the exhibits
to be visited by making
a service call to the
knowledgeBase ROS
node. The retrieved
values are stored in the
Blackboard.

None /knowledgebase/query

SayGoodByeSpeech Action Sends the ’goodbye’ mes-
sage to the textToSpeech
ROS node.

None /textToSpeech/say text

SayYesNoSpeech Action Sends the ’I can only
understand yes or
no’ message to the
textToSpeech ROS node.

None /textToSpeech/say text

D
ate:

24/01/2025
Version:

N
o

1.2
Page

25

D
5.4.3

RobotM
ission

Interpreter
Node Type Description Topic Subscribed Service Called
ScanningOvertAttentionMode Action Sets the attention pa-

rameter ’state’ to
’scanning’ and sends it
to the overtAttention
ROS node.

None /overtAttention/set mode

SelectExhibit Action Selects the next exhibit
to visit from the Black-
board. The values of the
selected exhibit will be set
for other nodes to retrieve
and perform their respec-
tive objectives.

None None

SocialOvertAttentionMode Action Sets the attention pa-
rameter ’state’ to
’social’ and sends it to
the overtAttention ROS
node.

None /overtAttention/set mode

START OF TREE Action A node used for debug-
ging purposes to indicate
the start of the mission by
printing on the terminal.

None None

WelcomeGesture Action Sends the ’welcome’
gesture parameters to the
gestureExecution
ROS node. The
’gesture type’ parame-
ter is set to ’iconic’.

None /gestureExecution/perform gesture

WelcomeSpeech Action Sends the ’welcome’ mes-
sage to the textToSpeech
ROS node.

None /textToSpeech/say text

D
ate:

24/01/2025
Version:

N
o

1.2
Page

26

D5.4.3 Robot Mission Interpreter

5 Executing Missions

5.1 Prerequisites

Before executing the behaviorController node, several prerequisites must be met:

• All nine CSSR4Africa ROS nodes (detailed in the ’Module Design’ section) must be
running under the same roscore instance, either on the physical robot or simulator
platform

• The behaviorController node must be properly built and sourced in the ROS
workspace

• The behaviorControllerConfiguration.ini file must be correctly configured
with the desired settings

• The target mission specification file must be present in the data/ directory

5.2 Execution Process

To launch the behaviorController node, execute:
Launch the Robot Mission Interpreter
rosrun cssr_system behaviorController

If any of the required ROS nodes are not running, the behaviorController will
display an error message and terminate execution.

5.3 Switching Missions

To execute a different mission:

1. Place the new robot mission specification file in the data/ directory

2. Update the behaviorControllerConfiguration.ini file to reference the new
specification file

3. Execute the behaviorController node as described above

Date: 24/01/2025
Version: No 1.2

Page 27

D5.4.3 Robot Mission Interpreter

6 Unit Tests

To execute the unit tests, users must first install the required software packages as
detailed in Deliverable D3.3. The unit tests’ operation is controlled by the configuration
file behaviorControllerTestConfiguration.ini, which contains essential key-value
pairs for test execution.

6.1 Test Configuration

Table 5: Configuration Parameters for the Robot Mission Interpreter Node Unit Tests

Key Value Description
failureRate 0.1 -- 1 Specifies the failure rate of the service calls made to servers

advertised by the stubs. A value of 0.1 corresponds to a 10%
failure rate, meaning that 10% of service calls will result in
a simulated failure response. The default value is 0.1.

arrivalRate 1 -- ∞ Specifies the rate at which messages are sent to a topic by
the drivers, modeled using a Poisson distribution. A value
of 1 indicates that, on average, 1 message is sent per minute.

verboseMode true or false Determines whether diagnostic data is printed to the ter-
minal. Setting this to true enables detailed logging, which
is useful for debugging and monitoring, while false sup-
presses such output for normal operation.

6.2 Launching Tests

To execute the behaviorController tests, use the following launch command:
Launch the Robot Mission Interpreter Unit Tests
roslaunch unit_tests behaviorControllerTest . launch

The above command will launch all nine simulated ROS nodes along with the behaviorController
node. The behaviorController will execute the mission by interacting with with the
servers and topics made available by the stubs and drivers. The list of the topics and
servers that will be simulated are the ones listed in Table 2 and Table 3 respecively. It
is important to note that the robot mission specification file used for the tests is the one
defined within the configuration file of the behaviorController node.

Test results are displayed on the terminal and recorded in behaviorControllerTestOutput.dat.
This file logs the Action or Condition nodes that failed, the Topic or Service associated
with each failed node, and any additional messages available at the time of failure.

Date: 24/01/2025
Version: No 1.2

Page 28

D5.4.3 Robot Mission Interpreter

References

[1] Razan Ghzouli, Thorsten Berger, Einar Broch Johnsen, Andrzej Wasowski, and
Swaib Dragule. Behavior trees and state machines in robotics applications, 2023.
arXiv preprint arXiv:2208.04211.

[2] Razan Ghzouli, Thorsten Berger, Einar Broch Johnsen, Swaib Dragule, and Andrzej
Wasowski. Behavior trees in action: A study of robotics applications. In Proc. 13th
ACM SIGPLAN Int. Conf. on Software Language Engineering, volume SPLASH ’20,
pages 196–209, 2020.

[3] Behaviortree.cpp website. https://www.behaviortree.dev. Accessed: 2024-12-14.

[4] Eric Dortmans, Teade Punter, and Ramadoni Syahputra. Behavior trees for smart
robots practical guidelines for robot software development. Journal of Robotics, 2022,
2022.

[5] Matteo Iovino, Edvards Scukins, Jonathan Styrud, Petter Ögren, and Christian
Smith. A survey of behavior trees in robotics and ai, 2020. arXiv preprint
arXiv:2005.05842.

[6] Behaviortree.cpp github repository. https://github.com/BehaviorTree/
BehaviorTree.CPP. Accessed: 2024-12-14.

[7] Ros navigation stack. https://navigation.ros.org. Accessed: 2024-12-14.

[8] Roscon 2022 presentation. https://roscon.ros.org/2022/. Accessed: 2024-12-14.

Date: 24/01/2025
Version: No 1.2

Page 29

https://www.behaviortree.dev
https://github.com/BehaviorTree/BehaviorTree.CPP
https://github.com/BehaviorTree/BehaviorTree.CPP
https://navigation.ros.org
https://roscon.ros.org/2022/

D5.4.3 Robot Mission Interpreter

Principal Contributors

The main authors of this deliverable are as follows (in alphabetical order).

Tsegazeab Tefferi, Carnegie Mellon University Africa.
David Vernon, Carnegie Mellon University Africa.

Date: 24/01/2025
Version: No 1.2

Page 30

D5.4.3 Robot Mission Interpreter

Document History

Version 1.0
First draft.
Tsegazeab Tefferi.
15 December 2024.

Version 1.1
Updated Executive Summary.
Fixed formatting issues.
David Vernon.
31 December 2024.

Version 1.2
Reflected the change in ROS node name from “scriptInterpreter” to “behaviorCon-
troller”
Added a new subsection in Section 3, “Data Specifications”
Corrected errata in the document.
Tsegazeab Tefferi.
24 January 2025.

Date: 24/01/2025
Version: No 1.2

Page 31

	Introduction
	Requirements Definition
	Module Design
	Dependencies
	BehaviorTree.CPP

	Mission Execution
	The initializeTree function
	Blackboard
	Custom Action and Condition Nodes
	HandleFallBack Action Node
	Data Specifications

	Implementation
	File Organization
	External Dependencies
	Main Source Files
	Configuration Files
	Robot Mission Specifications
	Service Definition Files
	Message Definition Files
	Package Relevant Files

	Configuration File
	Input File
	Output File
	Topics File
	Topics Subscribed
	Topics Published
	Services Supported
	Services Called
	Robot Mission Nodes

	Executing Missions
	Prerequisites
	Execution Process
	Switching Missions

	Unit Tests
	Test Configuration
	Launching Tests

	References
	Principal Contributors
	Document History

