
Culturally Sensitive Social Robotics
for Africa

D5.4.2 Robot Mission Language

Due date: 30/06/2024
Submission Date: 05/03/2025

Revision Date: 11/03/2025

Start date of project: 01/07/2023 Duration: 36 months

Lead organisation for this deliverable: Carnegie Mellon University Africa (for Wits)

Responsible Person: Revision: 1.1

Project funded by the African Engineering and Technology Network (Afretec)
Inclusive Digital Transformation Research Grant Programme

Dissemination Level
PU Public PU
PP Restricted to other programme participants (including Afretec Administration)
RE Restricted to a group specified by the consortium (including Afretec Administration)
CO Confidential, only for members of the consortium (including Afretec Administration)

D5.4.2 Robot Mission Language

Executive Summary

This deliverable represents the outcome of Task 5.4.2. It comprises four elements: (i) a mode of
abstract modelling — behavior trees — that can be used to formally specify the interactions in the
use case scenarios and enact them in a culturally sensitive manner using the culture knowledge base
and an environment knowledge base, (ii) two files containing a specification of the two use case sce-
narios using behavior trees, (iii) an environment knowledge base file with the information required
to complete the robot mission, and (iv) the documented software required to compile a C++ helper
class EnvironmentKnowledgeBase to read the environment knowledge base file, store the knowl-
edge, and make the knowledge accessible through a suite of access methods. As such, this deliverable
provides the input for the development in Task 5.4.3 of an interpreter that can translate this abstract
specification into robot actions, thereby enacting the use case scenarios defined in Tasks 2.1, 2.2, and
2.3 and documented in Deliverables D2.1, D2.2, and D2.3.

In the work plan, this deliverable and deliverable D5.4.3 were assigned to the University of the
Witswatersrand. However, the material in this report was developed and written by Carnegie Mellon
University Africa. This was necessary because of unavoidable delays in the completion of the asso-
ciated task by Wits, and because the robot mission language and the robot mission interpreter, are
essential for integrating and demonstrating the use case scenarios.

Date: 11/03/2025
Version: No 1.1

Page 2

D5.4.2 Robot Mission Language

Contents

1 Introduction 4

2 Specification of Robot Missions using Behavior Trees 4

3 Use Case Scenario Robot Missions 4
3.1 Lab Tour Robot Mission Behavior Tree . 4
3.2 Receptionist Robot Mission Behavior Tree . 4

4 Environment Knowledge Ontology and Knowledge Base 5

5 Environment Knowledge Base Implementation 7
5.1 File Organization . 7
5.2 Configuration File . 8
5.3 Environment Knowlege Base . 9
5.4 Output Data File . 9
5.5 Class Definition . 9

5.5.1 Constructor . 10
5.5.2 Destructor . 10
5.5.3 Private Data . 10
5.5.4 Public Access Methods . 12

6 Example Application 13

Appendix A The EnvironmentKnowledgeBase Class 16

References 17

Principal Contributors 17

Document History 18

Date: 11/03/2025
Version: No 1.1

Page 3

D5.4.2 Robot Mission Language

1 Introduction

This deliverable represents the outcome of Task 5.4.2. It has four sections.
Section 2 addresses the specification of robot missions using behavior trees, a popular alternative

to state machines as a model of abstract modelling to formally specify the interactions in the use case
scenarios.

Section 3 provides the behavior tree specification for the two CSSR4Africa use case scenarios, the
robot laboratory tour robot mission in Section 3.1 and the receptionist robot mission in Section 3.2.

Since we we are particularlarly focussed on enacting these missions in a culturally sensitive man-
ner, we require both a cultural knowledge ontology & culture knowledge base, and an environment
knowledge ontology & environment knowledge base. The former is described in Deliverable D.5.4.1,
while the latter is described in Section 4 of this deliverable.

The deliverable concludes with Section 5 which addresses the implementation of the environment
knowledge base and, specifically, with the description of a C++ helper class to read the environment
knowledge base file, store the knowledge, and make the knowledge accessible through a suite of access
methods. As such, it provides the input for the development in Task 5.4.3 of an interpreter that can
translate the abstract behavior tree specifications in Sections 3.1 and 3.2 into robot actions, thereby
enacting the use case scenarios defined in Tasks 2.1, 2.2, and 2.3 and documented in Deliverables
D2.1, D2.2, and D2.3.

In the work plan, this deliverable and deliverable D5.4.3 were assigned to the University of the
Witswatersrand. However, the material in this report was developed and written by Carnegie Mellon
University Africa. This was necessary because of unavoidable delays in the completion of the asso-
ciated task by Wits, and because the robot mission language and the robot mission interpreter, are
essential for integrating and demonstrating the use case scenarios.

2 Specification of Robot Missions using Behavior Trees

Pending completion.

3 Use Case Scenario Robot Missions

3.1 Lab Tour Robot Mission Behavior Tree

Pending completion.

3.2 Receptionist Robot Mission Behavior Tree

Pending completion.

Date: 11/03/2025
Version: No 1.1

Page 4

D5.4.2 Robot Mission Language

4 Environment Knowledge Ontology and Knowledge Base

Figure 1 presents a simple ontology of environment knowledge. In this ontology, internal nodes in
the ontology tree form the key in the environment knowledge base, e.g., robotLocation. Leaf
nodes represent the data entities and their types. This allows multiple elements in a value for each
key, e.g., robotLocation 3 15.2 9.0 45.0. The identification number value element associated
with each key is the means by which the different elements an environment location — robot location,
location description, gesture target, pre-gesture message, post-gesture message — are related. The
tour specification identifies the number and sequence of locations to be visited in the tour.

Environment Knowledge

Robot Location

Identification Number (integer)

Pose

x (float)

y (float)

theta (float)

Robot Location

Identification Number (integer)

Description (string)

Gesture Target

Identification Number (integer)

Position

x (float)

y (float)

z (float)

Pre-gesture Message

Identification Number (integer)

Description(string)

English (string)

Isizulu (string)

Kinyarwanda (string)

Post-gesture Message

Identification Number (integer)

Description(string)

English (string)

Isizulu (string)

Kinyarwanda (string)

Tour Specification

Number of Locations (integer)

Location Sequence

Identification Number (integer),

Identification Number (integer),

...

Identification Number (integer)

Figure 1: Environment knowledge ontology.

Date: 11/03/2025
Version: No 1.1

Page 5

D5.4.2 Robot Mission Language

Table 1 lists the key-value pairs, i.e., each key and the associated multiple numeric or alphanumeric
elements of the value that encapsulate the environment knowledge. These numeric or alphanumeric
values can then be used directly in the robot mission interpreter, i.e., the behaviorController ROS
node, and passed as arguments in the service requests it issues to the nodes in the system architecture
to conduct a tour or provide directions as a response to an enquiry at reception.

The key-value pairs are stored in a file environmentKnowledgeBaseInput.dat. This file is
read and the value-pairs are accessed using a helper class EnvironmentKnowledgeBase described
in Section 5.

Environment Knowledge

Key Values Units
RobotLocation <IDNumber> <x> <y> <theta> Metres, degrees

RobotLocationDescription <IDNumber> <text> String

GestureTarget <IDNumber> <x> <y> <z> Metres

PreGestureMessageEnglish <IDNumber> <text> String

PreGestureMessageIsizulu <IDNumber> <text> String

PreGestureMessageKinyarwanda <IDNumber> <text> String

PostGestureMessageEnglish <IDNumber> <text> String

PostGestureMessageIsizulu <IDNumber> <text> String

PostGestureMessageKinyarwanda <IDNumber> <text> String

TourSpecification <n> <ID1>, <ID2>, <IDn>

Table 1: Key-value pairs for specifying environment knowledge actions using the ontology depicted
in Figure 1. As noted above, the identification number element of the value associated with each
key is the means by which the robot location, the location description, the gesture target, the pre-
gesture message, the post-gesture message are related. The tour specification identifies the number of
locations and the sequence of locations to be visited in the tour.

Date: 11/03/2025
Version: No 1.1

Page 6

D5.4.2 Robot Mission Language

5 Environment Knowledge Base Implementation

The key-value pairs listed in Tables 1, comprising an alphanumeric key and associated numeric or
symbolic values that encapsulate the environment knowledge, are stored in a file named
environmentKnowledgeBaseInput.dat. This file is accessed using a C++ helper class
EnvironmentKnowledgeBase described in this section. Specifically, a C++ object instantiation
of the helper class reads the environment knowledge base file, store the knowledge, and make the
knowledge accessible through three public access methods. The remainder of this section details the
implementation of this C++ helper class.

5.1 File Organization

Since the C++ helper class is intended to be embedded in behaviorController ROS node, it is
not included as an individual component in the GitHub software repository. That said, the constituent
files are organized is several subdirectories in a utilities package, as shown in Figure 2.

There are three C++ source code files: environmentKnowledgeBaseApplication.cpp,
environmenteKnowledgeBaseImplementation.cpp, and environmentKnowledge.h. The
implementation file contains the helper class definition. The interface file contains the helper class
declaration.

The application file is essentially a unit test to illustrate how the helper class is used and to verify
that it works correctly. It instantiates a C++ helper class object which reads the environment knowl-
edge base file, and uses the access method to retrieve values in the environment knowledge base,
implemented using a binary search tree dictionary data structure, write them to the terminal.

It is intended that the implementation and interface files, along with the configuration and data files,
be integrated in the behaviorControllerROS node files. The relevant parts of the behaviorController
software can use the application code as the basis of its implementation of functionality to access the
knowledge base.

utilities

config

environmentKnowledgeBaseConfiguration.ini

data

environmentKnowledgeBaseInput.dat

include

utilities

environmentKnowledgeBaseInterface.h

src

environmentKnowledgeBaseApplication.cpp

environmentKnowledgeBaseImplementation.cpp

launch

environmentKnowledgeBaseExample.launch

README.md

CMakeLists.txt

Figure 2: Directory Structure for the EnvironmentKnowledgeBase C++ helper class.

Date: 11/03/2025
Version: No 1.1

Page 7

D5.4.2 Robot Mission Language

5.2 Configuration File

The population of the knowledge base is determined by the contents of a configuration file
environmentKnowledgeBase.ini that contain a list of key-value pairs, as shown below in Table 2.

The configuration file is named environmentKnowledgeBaseConfiguration.ini.

Table 2: Configuration file for the EnvironmentKnowledgeBase helper class.

Key Value Description
knowledgeBase environmentKnowledgeBaseInput.dat Specifies the filename of the file in which

the cultural knowledge key-value pairs are
stored.

verboseMode true or false Specifies whether diagnostic data is to be
printed to the terminal.

Date: 11/03/2025
Version: No 1.1

Page 8

D5.4.2 Robot Mission Language

5.3 Environment Knowlege Base

The environment knowledge base file comprises a list of key-value pairs as shown in Table 3.

Table 3: Key-value pairs listed in the knowledge base file environmentKnowledgeBaseInput.dat.

robotLocationDescription 1 Pepper’s starting location
robotLocation 1 2.6 8.1 -90
gestureTarget 1 0.0 0.0 0.0
preGestureMessageEnglish 1 Welcome the the robotics lab at Carnegie Mellon University Africa
preGestureMessageIsiZulu 1 No message in isiZulu
preGestureMessageKinyarwanda 1 No message in Kinyarwanda
postGestureMessageEnglish 1 I hope you enjoy the tour
postGestureMessageIsiZulu 1 No message in isiZulu
postGestureMessageKinyarwanda 1 No message in Kinyarwanda

robotLocationDescription 2 The (other) Pepper robot
robotLocation 2 2.6 8.1 -45
gestureTarget 2 3.2 8.4 0.82
preGestureMessageEnglish 2 This is the Pepper humanoid robot
preGestureMessageIsiZulu 2 No message in isiZulu
preGestureMessageKinyarwanda 2 No message in Kinyarwanda
postGestureMessageEnglish 2 We use it for research in social robotics and human-robot interaction
postGestureMessageIsiZulu 2 No message in isiZulu
postGestureMessageKinyarwanda 2 No message in Kinyarwanda

robotLocationDescription 3 Lynxmotion
robotLocation 3 2.0 6.3 -45
gestureTarget 3 0.6 4.8 0.82
preGestureMessageEnglish 3 This is the Lynxmotion robot
preGestureMessageIsiZulu 3 No message in isiZulu
preGestureMessageKinyarwanda 3 No message in Kinyarwanda
postGestureMessageEnglish 3 We use it for teaching robot manipulation
postGestureMessageIsiZulu 3 No message in isiZulu
postGestureMessageKinyarwanda 3 No message in Kinyarwanda

robotLocationDescription 4 Roomba
robotLocation 4 5.0 3.9 110
gestureTarget 4 6.8 4.8 0.82
preGestureMessageEnglish 4 This is the Roomba
preGestureMessageIsiZulu 4 No message in isiZulu
preGestureMessageKinyarwanda 4 No message in Kinyarwanda
postGestureMessageenglish 4 We use it for teaching mobile robotics
postGestureMessageIsiZulu 4 No message in isiZulu
postGestureMessageKinyarwanda 4 No message in Kinyarwanda

robotLocationDescription 5 Pepper’s starting location
robotLocation 5 2.6 8.1 -90
gestureTarget 5 0.0 0.0 0.0
preGestureMessageEnglish 5 I hope you enjoyed the tour
preGestureMessageIsiZulu 5 No message in isiZulu
preGestureMessageKinyarwanda 5 No message in Kinyarwanda
postGestureMessageEnglish 5 See you again soon
postGestureMessageIsiZulu 5 No message in isiZulu
postGestureMessageKinyarwanda 5 No message in Kinyarwanda

tourSpecification 5 1 4 3 2 5

5.4 Output Data File

There is no output data file for the environment knowledge base helper class.

5.5 Class Definition

Instantiating the EnvironmentKnowledgeBase class as a C++ object causes the contents of the en-
vironment knowledge base file to be read and stored in private dictionary data structure. Diagnostic
messages are printed on the screen, depending on the value of verboseMode key in the configu-
ration file. The contents of the dictionary are accessed using the identification number. Appendix A
provides the full definition of the EnvironmentKnowledgeBase class.

Date: 11/03/2025
Version: No 1.1

Page 9

D5.4.2 Robot Mission Language

5.5.1 Constructor

The EnvironmentKnowledgeBase() constructor reads the configuration file to determine the mode
of operation, the name of the knowledge base value types file, and the name of the knowledge base
file. It sets a private data member flag with the mode of operation, initializes the private dictionary
data structure with the key-value pairs read from the knowledge base file. If operating in verbose
mode, it echoes the keys and values to the terminal.

5.5.2 Destructor

The ˜EnvironmentKnowledgeBase() destructor deletes the dictionary data structure and write a
diagnostic message if in verbose mode.

5.5.3 Private Data

The dictionary is implemented using a binary search tree with an element of type struct KeyValueType,
with ten fields.
typedef struct {

float x;
float y;
float theta;

} RobotLocationType;

typedef struct {
float x;
float y;
float z;

} GestureTargetType;

typedef struct {
int key; // location identification number
RobotLocationType robotLocation;
char robotLocationDescription[STRING_LENGTH];
GestureTargetType gestureTarget;
char preGestureMessageEnglish[STRING_LENGTH];
char preGestureMessageIsiZulu[STRING_LENGTH];
char preGestureMessageKinyarwanda[STRING_LENGTH];
char postGestureMessageEnglish[STRING_LENGTH];
char postGestureMessageIsiZuluSTRING_LENGTH];
char postGestureMessageKinyarwanda[STRING_LENGTH];

} KeyValueType;

The first field key is the identification number for this location. The data type is integer. This is the
key that is used to access data in the binary search tree dictionary data structure.

The second field robotLocation is a structure with three fields containing the x, y, and θ float-
ing point values that specify the pose of the robot at this location.

The third field robotLocationDescription is a description of this robot location. The data type
is a C-string, i.e., a null-terminated array of characters.

The fourth field gestureTarget is a structure with three fields containing the x, y, and z float-
ing point values that specify the position of the target to which the robot is to gesture.

The fifth, sixth, and seventh fields are messages to be spoken by the robot prior to executing the

Date: 11/03/2025
Version: No 1.1

Page 10

D5.4.2 Robot Mission Language

gesture; there are three versions, one in English, one in isiZulu, and one in Kinyarwanda. The data
type is a C-string, i.e., a null-terminated array of characters.

The eighth, ninth, and tenth fields are messages to be spoken by the robot after executing the ges-
ture; again, there are three versions, one in English, one in isiZulu, and one in Kinyarwanda. The data
type is a C-string, i.e., a null-terminated array of characters.

In addition to the binary search tree dictionary data structure, there is also a data structure
tourSpecification to specify the tour. This is a structure with two fields: an integer specifying
the number of robot locations in a tour and an array of integer identification numbers specifying se-
quence of robot locations that the robot should visit during the tour, in the order in which they are
stored in the array.
typedef struct {

int numberOfLocations;
int locationIdNumber[MAX_NUMBER_OF_TOUR_LOCATIONS];

} TourSpecificationType;

There are also a small number of other private utility data fields to store the configuration filename,
the configuration data, a keyValue, and the verbose mode flag.

Date: 11/03/2025
Version: No 1.1

Page 11

D5.4.2 Robot Mission Language

5.5.4 Public Access Methods

There are three public methods, one to print the knowledge base to the screen, one to retrieve a key-
value pair, given the identification number of the location, and one to retrieve the tour specification.
These are printToScreen(), getValue(), and getTour(), respectively.

The printToScreen() method does not have any parameters.

The getValue() method has two parameters: a key and a value, as follows.
bool getValue(int idNumber, KeyValueType *keyValue);

The method returns true if the key value was successfully retrieved from the knowledge base, false
otherwise.

The getTour() method has one parameter: the tour data, as follows.
bool getTour(struct TourSpecificationType *tourSpecification);

The method returns true if the tour was successfully retrieved from the knowledge base, false
otherwise.

Date: 11/03/2025
Version: No 1.1

Page 12

D5.4.2 Robot Mission Language

6 Example Application
The example application in environmentKnowledgeBaseApplication.cpp illustrates the use
of the class to read the environment knowledge base file and print each key-value pair with multiple
elements. It also provides examples of how to retrieve the values associated with a robot location
given by its identification number, and how to retrieve the sequence of robot locatiions in a tour.
#include <utilities/environmentKnowledgeBaseInterface.h>

int main() {

KeyValueType keyValue; // structure with key and values
TourSpecificationType tour; // list of tour locations
int idNumber; // location id
int i; // counter

/* instantiate the environment knowledge base object */
/* this reads the knowledge value types file and the knowledge base file */
/* as specified in the environmentKnowledgeBaseConfiguration.ini file */

EnvironmentKnowledgeBase knowledgebase;

/* verify that the knowledge base was read correctly */

printf("main: the environment knowledge base data:\n");
printf("--\n\n");

knowledgebase.printToScreen();

printf("main: the environment knowledge base tour:\n");
printf("---\n\n");

knowledgebase.getTour(&tour);

/* query the contents of the knowledge base: */
/* retrieve all the locations on a tour */
/* and print them in the order in which they are specified */

for (i = 0; i <= tour.numberOfLocations; i++) {
idNumber = tour.locationIdNumber[i];
if (knowledgebase.getValue(idNumber, &keyValue) == true) {

printf("main:\n"
"Key %-4d \n"
"Location Description %s \n"
"Robot Location (%.1f, %.1f %.1f)\n"
"Gesture Target (%.1f, %.1f %.1f) \n"
"Pre-Gesture Message English %s \n"
"Pre-Gesture Message isiZulu %s \n"
"Pre-Gesture Message Kinyarwanda %s \n"
"Post-Gesture Message %s \n"
"Post-Gesture Message isiZulu %s \n"
"Post-Gesture Message Kinyarwanda %s \n\n",
keyValue.key,
keyValue.robotLocationDescription,
keyValue.robotLocation.x, keyValue.robotLocation.y, keyValue.robotLocation.theta,
keyValue.gestureTarget.x, keyValue.gestureTarget.y, keyValue.gestureTarget.z,
keyValue.preGestureMessageEnglish,
keyValue.preGestureMessageIsiZulu,
keyValue.preGestureMessageKinyarwanda,
keyValue.postGestureMessageEnglish,
keyValue.postGestureMessageIsiZulu,
keyValue.postGestureMessageKinyarwanda);

}
}

}

Date: 11/03/2025
Version: No 1.1

Page 13

D5.4.2 Robot Mission Language

Run the application by entering the following command:

rosrun utilities environmentKnowledgeBaseExample

This assumes the existence of a utilities package, as shown in Figure 2, and that the package has
been built with catkin make.

Screenshots of the output of running this application are shown in Figures 3 and 4.

Date: 11/03/2025
Version: No 1.1

Page 14

D5.4.2 Robot Mission Language

Figure 3: Screenshot of the output of running the example application: invoking printToScreen().

Figure 4: Screenshot of the output of running the example application: invoking getTour() and
invoking getValue() successively for each location on the tour.

Date: 11/03/2025
Version: No 1.1

Page 15

D5.4.2 Robot Mission Language

Appendix A The EnvironmentKnowledgeBase Class

Note: documentation comments for the private methods have been removed due to space constraints
but are retained in the source file.
#define NUMBER_OF_CONFIGURATION_KEYS 3
#define NUMBER_OF_VALUE_KEYS 7
#define MAX_NUMBER_OF_TOUR_LOCATIONS 20

typedef char Keyword[KEY_LENGTH];

typedef struct {
char knowledgeBase[MAX_FILENAME_LENGTH];
bool verboseMode;

} ConfigurationDataType;

typedef struct {
float x;
float y;
float theta;

} RobotLocationType;

typedef struct {
float x;
float y;
float z;

} GestureTargetType;

typedef struct {
int numberOfLocations;
int locationIdNumber[MAX_NUMBER_OF_TOUR_LOCATIONS];

} TourSpecificationType;

typedef struct {
int key; // i.e., idNumber
RobotLocationType robotLocation;
char robotLocationDescription[STRING_LENGTH];
GestureTargetType gestureTarget;
char preGestureMessageEnglish[STRING_LENGTH];
char preGestureMessageIsiZulu[STRING_LENGTH];
char preGestureMessageKinyarwanda[STRING_LENGTH];
char postGestureMessageEnglish[STRING_LENGTH];
char postGestureMessageIsiZuluSTRING_LENGTH];
char postGestureMessageKinyarwanda[STRING_LENGTH];

} KeyValueType;

typedef struct node *NodeType;

typedef struct node {
KeyValueType keyValue;
NodeType left, right;

} Node;

typedef NodeType BinaryTreeType;

typedef BinaryTreeType WindowType;

class EnvironmentKnowledgeBase {

public:
EnvironmentKnowledgeBase();
˜EnvironmentKnowledgeBase();

bool getValue(int key, KeyValueType *keyValue);
bool getTour(TourSpecificationType *tour);
void printToScreen();

private:
BinaryTreeType tree = NULL;
TourSpecificationType tourSpecification;
KeyValueType keyValue;
ConfigurationDataType configurationData;
char configuration_filename[MAX_STRING_LENGTH] = "environmentKnowledgeBaseConfiguration.ini";

BinaryTreeType *delete_element(KeyValueType keyValue, BinaryTreeType *tree);
KeyValueType delete_min(BinaryTreeType *tree);
bool getValue(int key, KeyValueType *keyValue, BinaryTreeType *tree);
void initialize(BinaryTreeType *tree);
int inorder_print_to_file(BinaryTreeType tree, int n, FILE *fp_out);
int inorder_print_to_screen(BinaryTreeType tree, int n);
BinaryTreeType *insert(KeyValueType keyValue, BinaryTreeType *tree, bool update);
int postorder_delete_nodes(BinaryTreeType tree);
int print_to_file(FILE *fp_out);
int print_to_file(BinaryTreeType tree, FILE *fp_out);
int print_to_screen(BinaryTreeType tree);
void readConfigurationData();
void readKnowledgeBase();

};

Date: 11/03/2025
Version: No 1.1

Page 16

D5.4.2 Robot Mission Language

Principal Contributors

The main authors of this deliverable are as follows (in alphabetical order).

Tsegazeab Tefferi, Carnegie Mellon University Africa.
David Vernon, Carnegie Mellon University Africa.

Date: 11/03/2025
Version: No 1.1

Page 17

D5.4.2 Robot Mission Language

Document History

Version 1.0
Partial version to address the specification of the environment knowledge base and
EnvironmentKnowledgeBase helper class.
David Vernon.
5 March 2025.

Version 1.1
Removed the C++ helper class in the GitHub repository.
Extended the ontology and added new keys to allow for pre- and post-gesture messages in En-
glish, isiZulu, and Kinyarwanda.
David Vernon.
11 March 2025.

Date: 11/03/2025
Version: No 1.1

Page 18

	Introduction
	Specification of Robot Missions using Behavior Trees
	Use Case Scenario Robot Missions
	Lab Tour Robot Mission Behavior Tree
	Receptionist Robot Mission Behavior Tree

	Environment Knowledge Ontology and Knowledge Base
	Environment Knowledge Base Implementation
	File Organization
	Configuration File
	Environment Knowlege Base
	Output Data File
	Class Definition
	Constructor
	Destructor
	Private Data
	Public Access Methods

	Example Application
	Appendix The EnvironmentKnowledgeBase Class
	References
	Principal Contributors
	Document History

