
Culturally Sensitive Social Robotics
for Africa

D5.2 Animate behaviour Subsystem

Due date: 31/03/2024
Submission Date: 21/12/2024

Revision Date: 23/01/2025

Start date of project: 01/07/2023 Duration: 36 months

Lead organisation for this deliverable: Carnegie Mellon University Africa

Responsible Person: Eyerusalem Mamuye Birhan Revision: 1.1

Project funded by the African Engineering and Technology Network (Afretec)
Inclusive Digital Transformation Research Grant Programme

Dissemination Level
PU Public PU
PP Restricted to other programme participants (including Afretec Administration)
RE Restricted to a group specified by the consortium (including Afretec Administration)
CO Confidential, only for members of the consortium (including Afretec Administration)



D5.2 Animate behaviour Subsystem

Executive Summary

Deliverable D5.2 of the Animate behaviour Subsystem, part of the CSSR4Africa project, aims to
enhance the robot’s lifelike appearance through random movements. This deliverable seeks to cre-
ate an engaging and interactive experience by implementing a robust ROS-based module named
animateBehaviour. The module controls the actuators of the Pepper robot to perform random,
subtle body movements, flex its hands, and slightly rotate its base along the Z-axis. All joints, except
for headYaw and headPitch, are actuated to generate these motions.

The animateBehaviour node generates movements in a randomized pattern and advertises the
/animateBehaviour/set activation service to enable or disable its operation, allowing
dynamic activation and deactivation. This deliverable includes a comprehensive report on the devel-
opment process, covering the refinement of initial requirements, definition of functional character-
istics, and systematic development procedures. Additionally, it provides a detailed user guide with
instructions on the code structure, configuration file parameters, and selective invocation of animate
behaviours—body movement, hand flexing, and base rotation.

Overall, this report provides a comprehensive overview of the development and implementation of
the animate behaviour subsystem. It details the functional specifications and technical design of the
animateBehaviour ROS node.

Date: 23/01/2025
Version: No 1.1

Page 2



D5.2 Animate behaviour Subsystem

Contents

Date: 23/01/2025
Version: No 1.1

Page 3



D5.2 Animate behaviour Subsystem

1 Introduction

Deliverable D5.2 focuses on the development and implementation of the animateBehaviour sub-
system, a component designed to enhance the lifelike appearance of Pepper robot. By periodically
actuating its joints in random patterns, this subsystem aims to give the robot more natural and dynamic
movements. This deliverable is part of Task 5.2, which aims to provide both functional software and
comprehensive documentation detailing the various stages of the software development process.

The animateBehaviour module is a ROS-based system that controls pepper’s actuators. It enables the
robot to perform subtle body movements, flex its hands, and slightly rotate its base along the Z-axis.
This movement is achieved by actuating all joints except for headYaw and headPitch, which are man-
aged by the Attention subsystem. By generating movements in a randomized pattern, the module
creates a natural and lifelike appearance for the robot.

A key feature of the animateBehaviour module is its dynamic activation and deactivation capability
via the service /animateBehaviour/set activation. The module’s operation is governed
by a configuration file, animateBehaviourConfiguration.ini, which specifies crucial pa-
rameters such as the platform (robot or simulator), type of animate behaviour, range of movement,
and topic name of the actuators. This configuration ensures compatibility with both the physical Pep-
per robot and a simulator. Additionally, the module includes a verbose mode that provides detailed
diagnostic information, which is useful for debugging and monitoring the system’s performance.

This report outlines the detailed specifications of the animateBehaviour module, covering interface
design, module design, and execution of the animate behaviour. The subsequent sections will delve
into each aspect comprehensively, ensuring that all components and functionalities are clearly ex-
plained and documented.

Date: 23/01/2025
Version: No 1.1

Page 4



D5.2 Animate behaviour Subsystem

2 Requirements Definition

The animateBehaviour module has been designed and implemented to enhance the lifelike appearance
of the Pepper robot by actuating its joints periodically in random patterns. This section details the
functional requirements that have been met to achieve this objective.

Randomized Joint Movements

The primary function of the animateBehaviour module is to actuate the robot joints periodically in a
random pattern. This functionality aims to simulate natural movements by keeping the joint angles
close to their default home positions. The randomization ensures that the movements are not repetitive,
contributing to a more realistic appearance of the robot.

Selective behaviour Invocation

The module supports the selective invocation of any of the three types of animate behaviour. If no spe-
cific behaviour is selected, all three behaviours will be invoked using All. The supported behaviours
are:

• Body Movement: Subtle movements of the robot’s body.

• Hand Flex: Flexing movements of the robot’s hands.

• Base Rotation: Slight rotation of the robot’s base along the Z-axis.

• All: All three behaviours will be invoked

This feature allows for targeted animations depending on the context, enhancing the flexibility and
applicability of the module.

Dynamic Activation/Deactivation

To manage the operational state of the module, a service has been implemented to provide dynamic
activation and deactivation.

Configuration Flexibility

The animateBehaviour module has been implemented to ensure compatibility with both the physical
Pepper robot and a simulator, allowing for development, testing, and deployment across various plat-
forms. Its operation is governed by a configuration file, animateBehaviourConfiguration.ini,
which specifies key parameters such as platform, type of animate behaviour, range of movement, and
topic names for actuators, enabling easy adaptation to different environments without altering the core
codebase. A verbose mode is included to provide detailed diagnostic information, which is useful
for debugging and monitoring the ROS node performance by outputting detailed logs of operations,
movement commands, status updates, and errors.

Date: 23/01/2025
Version: No 1.1

Page 5



D5.2 Animate behaviour Subsystem

3 Module Specifications

The animate behaviour module implements three core movement types to create lifelike animations:
flexible hand movements, subtle body movements, and base rotation. All movements are periodic and
follow a random pattern, with the random positions close to the default home position.

Generating Random Movements

To calculate the random position centered on the home position, two percentage values are used: the
selected range and the maximum range. The selected range is the same for all actua-
tors, while the maximum range varies between them.

• Arm Actuators: The armMaximumRange is a list of five values defined in the configuration.
Each value corresponds to a specific joint as follows:

– RShoulderPitch

– ShoulderRoll

– ElbowRoll

– ElbowYaw

– WristYaw

For example, the default maximum range values for the arm are 0.2, 0.2, 0.2, 0.35,
0.2, corresponding to the above joints respectively.

• Hand Actuators: The handMaximumRange is a single value defined in the configuration,
and it applies to both the left and right hands. This value corresponds to the hand joint. For
example, in the configuration file, the preferred value is set to 0.7.

– Hand

NOTE

The hand actuator implementation is restricted to the physical robot system and does not
function in simulation environments. For implementation details, consult the Actuator
Test documentation. Flexible hand movement is achieved through coordinated control
of the elbow roll and wrist yaw joints, operating within defined position constraints.

• Leg Actuators: The legMaximumRange is a list of three values defined in the configuration.
Each value corresponds to a specific joint as follows:

– HipPitch

– HipRoll

– KneePitch

For example, the default maximum range values for the leg are 0.1, 0.1, 0.08, corre-
sponding to the above joints respectively.

Date: 23/01/2025
Version: No 1.1

Page 6

https://cssr4africa.github.io/deliverables/CSSR4Africa_Deliverable_D5.1.pdf
https://cssr4africa.github.io/deliverables/CSSR4Africa_Deliverable_D5.1.pdf


D5.2 Animate behaviour Subsystem

• Rotation Actuators: The rotMaximumRange is a single value defined in the configuration.
This value corresponds to the rotation joint. For example, in the configuration file, the default
value is set to 0.3.

– Wheel

Using the two main percentage values set above, the steps to calculate the random position are de-
scribed in Table ?? step by step.

Table 1: Step-by-step calculation of random position.

Step [Variable] Mathematical Formula

1. Full Range [FR] FR = MaxPosition−MinPosition

2. Maximum Range Offset [MRO] MRO = FR×MaxRangePercentage

3. Selected Range Offset [SRO] SRO =
(MRO × SelectedRangePercentage)/2

4a. Upper Position Bound [UB] UB =
min(HomePosition+ SRO,MaxPosition)

4b. Lower Position Bound [LB] LB =
max(HomePosition− SRO,MinPosition)

5. Random Position [RP] RP ∈ [LB,UB]

NOTE

The algorithm generates random positions for actuators, and each position is constrained such
that both the maximum range percentage and the selected range percentage must be between 0
and 1. Furthermore, the home position must be between the minimum and maximum positions
(MinPosition ≤ HomePosition ≤ MaxPosition). The final random position is generated
within these bounds (LB ≤ RP ≤ UB).

To achieve smooth movement patterns, instead of generating and moving to individual target posi-
tions, the system uses a list of pre-generated random positions. For all joints except the leg, a list
of random positions (configurable via numPoints) is generated. In the configuration file, the de-
fault value is set to 100, and the actuators move through this list continuously. However, leg joints
(HipPitch, HipRoll, KneePitch) require a different approach due to their movement characteristics.
For leg joints, continuous movement through 100 positions would result in excessive motion with-
out sufficient pauses. The solution implements a chunked pattern approach, where the total positions
(numPoints = 100) are divided into chunks. The chunk size is determined by two configuration pa-
rameters: numPoints and legRepeatFactor (set to 8). The legRepeatFactor determines
how many random positions (numPointsLeg set to 2) will be executed while other joints complete
their 100-position sequence.

Each chunk follows a specific pattern: the first two positions are random movements, followed
by home positions for the remainder of the chunk (about 10 home positions, as chunkSize =
numPoints / legRepeatFactor = 100 / 8 = 12). This creates a movement pattern where the
leg moves to two random positions, stays at the home position for a time interval, and then moves to

Date: 23/01/2025
Version: No 1.1

Page 7



D5.2 Animate behaviour Subsystem

the next set of random positions. This cycle continues through all 8 chunks, creating a more controlled
and rhythmic movement pattern suitable for leg joints.

Date: 23/01/2025
Version: No 1.1

Page 8



D5.2 Animate behaviour Subsystem

Pattern Structure:

Total Positions (numPoints) = 100
Leg Repeat Factor = 8
Random Positions per chunk (numPointsLeg) = 2
Chunk Size = numPoints/legRepeatFactor = 100/8 = 12

+-------------------+ +-------------------+ +-------------------+
| R R H H H H H ...| | R R H H H H H ...| | R R H H H H H ...| ...
+-------------------+ +-------------------+ +-------------------+
ˆ ˆ ˆ
| | |
2 Random 10 Home positions

NOTE

If the chunk size is not a whole number, the total leg positions might not sum up to 100. In
such cases, the remaining positions are filled with the home position. For example, if there are
96 positions, the last 4 will be set to the home position. To avoid this, use leg repeater factors
that divide evenly into 100.

Date: 23/01/2025
Version: No 1.1

Page 9



D5.2 Animate behaviour Subsystem

4 Implementation

File Organization and Its Purposes

The animateBehaviour directory is organized to include configuration files, data, header files,
source code, services, README.md, and CMakeLists.txt, as illustrated in Figure ??.

The config folder contains configuration settings, such as animateBehaviourConfigurati
on.ini, and defines parameters for behaviour customization. The data folder holds critical re-
sources, including pepperTopics.dat and simulatorTopics.dat, which provide topic map-
pings for communication with the Pepper robot or its simulator. The include/animate behaviour
folder contains header files, such as animateBehaviourInterface.h, that define interfaces
and declarations used throughout the module.

The src folder houses implementation files, such as animateBehaviourApplication.cpp
for application logic and animateBehaviourImplementation.cpp for detailed functional
execution. Additionally, the README.md file provides documentation for understanding and using
the module, while the CMakeLists.txt file manages the build system configuration. The direc-
tory also includes services to enable and disable the node, allowing dynamic control of its activation.

CSSR SYSTEM

animateBehaviour

config

animateBehaviourConfiguration.ini

data

animateBehaviourLogFile.log

pepperTopics.dat

simulatorTopics.dat

include

animate behaviour

animateBehaviourInterface.h

launch

src

animateBehaviourApplication.cpp

animateBehaviourImplementation.cpp

srv

setActivation.srv

CMakeLists.txt

CSSR4AfricaLogo.svg

README.md

Figure 1: Directory structure for the animate behaviour ROS package

Date: 23/01/2025
Version: No 1.1

Page 10



D5.2 Animate behaviour Subsystem

Configuration File

The operation of the animateBehaviour node is determined by the contents of a configura-
tion file, animateBehaviourConfiguration.ini, which contains a list of key-value pairs
as shown in the table below.

Table 2: Configuration parameters for the animate behaviour module.

Key Description
platform Specifies the target platform to be used, which can be set to either

simulator or robot.
robotTopics Specifies the name of the robot topics file. The robot topics file

contains the list of topics for the robot.
simulatorTopics Specifies the name of the simulator topics file. The simulator topics

file contains a list of simulator topics.
verboseMode If it is set to false, the terminal will print the configuration values,

copyright notice, startup messages, configuration values, and heartbeat
messages. If there is an error, the error message will also be displayed.
When the verbose mode is set to true, additional ROSINFO
messages used for debugging will be printed.

rotMaximumRange Used in the calculateAngularVelocityZ() function to
determine the maximum rotation range for base movements. The value
0.3 means 30% of the maximum possible angular velocity will be
used, and it is multiplied by the full range to limit how fast the robot
can rotate. You can increase this value up to 0.5 for more noticeable
rotations, but values above this might make the robot unstable.

selectedRange The selectedRange parameter acts as a global scaling factor for
all movements, except rotation. Set at 0.5 (50%), it provides a good
balance between visible movement and stability. You can adjust this
value between 0.3 and 0.7; lower values create more subtle
movements, while higher values make movements more noticeable.

armMaximumRange The armMaximumRange uses five values for different arm joints:
0.2, 0.2, 0.2, 0.35, and 0.2 for ShoulderPitch,
ShoulderRoll, LElbowRoll, LElbowYaw, and LWristYaw,
respectively. The slightly higher value (0.35) for the elbow yaw
allows more natural elbow movement. Keep the shoulder values (the
first two numbers) lower for stability.

handMaximumRange The handMaximumRange set at 0.7 allows significant joint hand
opening and closing. You can adjust this value between 0.5 and 0.8,
depending on how expressive you want the hand gestures to be.

legMaximumRange The legMaximumRange values (0.1, 0.1, 0.08) for
HipPitch, HipRoll, and KneePitch, respectively, are
intentionally conservative to maintain balance. The hip joints (the first
two values) are set at 10% range, while the knee is slightly more
restricted at 8%. It is recommended not to exceed 0.15 for any leg
joint to prevent stability issues.

Date: 23/01/2025
Version: No 1.1

Page 11



D5.2 Animate behaviour Subsystem

Table 2: Configuration parameters for the animate behaviour module.

Key Description
gestureDuration The gestureDuration parameter (currently set to 1.0 second) is

a timing control that determines how long the robot takes to move
between each randomly generated position. When the system
calculates random positions for arms, hands, or legs, these positions
become waypoints in a movement trajectory, and the
gestureDuration specifies the time allocated to travel between
each waypoint. Setting a lower duration value (like 0.5) creates faster
but potentially more abrupt movements, while higher values (like
2.0) result in slower motions. The preferred value is 1.0, which
provides balanced timing to create subtle body movement.

numPoints The numPoints parameter (preferred value set to 100) determines
the total number of random positions generated for arm and hand
movements. The purpose is to create a set of random positions, which
are passed as a single trajectory. This approach helps reduce jerks, as
it smooths the transitions between each set of 100 joint positions.

numPointsLeg The numPointsLeg parameter (preferred value set to 2) determines
the number of random positions generated for leg movements within
each repetition cycle. The purpose is to create a small set of random
positions, which are then repeated based on the legRepeatFactor
value. This approach helps maintain stability by using minimal leg
movements while still creating subtle motions through controlled
repetition.

legRepeatFactor The legRepeatFactor parameter (preferred value set to 8)
determines how many times the leg movements generated by
numPointsLeg are repeated. When legRepeatFactor is set to
8, the system takes the 2 generated positions and repeats them 8
times, creating a total of 16 movement points that run parallel to the
100 points generated for arm and hand movements. This
synchronized approach ensures coordinated full-body animation while
maintaining stable leg motions.

Input File

This node does not read from an input data file.

Output Data File

This node writes a log file to animateBehaviourLogFile.log as output, which will be used
as input information for unit test cases.

Topics Subscribed

This node does not subscribe to any topics.

Date: 23/01/2025
Version: No 1.1

Page 12



D5.2 Animate behaviour Subsystem

Topics Published

This node publishes actuator topics listed in Table ??, which are specified in the configuration file us-
ing the key-value pairs provided in pepperTopics.dat and simulatorTopics.dat. These
.dat files are stored in the data section of the animateBehaviour node.

When pepperTopics.dat is set in the configuration file, the node uses the topics defined in
pepperTopics.dat, which are published in the physical actuators of the robot. Similarly, when
simulatorTopics.dat is set in the configuration file, the node publishes to the topics specified
in simulatorTopics.dat, enabling communication with the simulator.

Table 3: Topics, Actuators, and Platforms

Topic Actuator Platform
/pepper dcm/RightHand controller/
follow joint trajectory

RHand Physical robot

/pepper dcm/LeftHand controller/
follow joint trajectory

LHand Physical robot

/pepper dcm/RightArm controller/
follow joint trajectory

RShoulderPitch,
RShoulderRoll, RElbowYaw,
RElbowRoll, RWristYaw

Physical robot

/pepper dcm/LeftArm controller/
follow joint trajectory

LShoulderPitch,
LShoulderRoll, LElbowYaw,
LElbowRoll, LWristYaw

Physical robot

/pepper dcm/Pelvis controller/
follow joint trajectory

HipRoll, HipPitch, KneePitch Physical robot

/pepper dcm/cmd moveto Wheels Physical robot
/pepper/RightArm controller/
follow joint trajectory

RElbowYaw, RElbowRoll Simulator

/pepper/LeftArm controller/
follow joint trajectory

LElbowYaw, LElbowRoll Simulator

/pepper/Pelvis controller/
follow joint trajectory

HipRoll, HipPitch, KneePitch Simulator

/pepper/cmd vel Wheels Simulator

Services Supported

This node provides and advertises a server for a service /animateBehaviour/setActivation
to enable or disable the operation of the node, i.e., to activate or suspend the publishing of data on
the actuator topics to give the appearance of an animated agent. The service defines a request field
string state which can have a value of either “enabled” or “disabled”. Depending on the state
value, the node will be enabled or disabled. The service returns a response value of “1” for success
or “0” for failure. The service is called by the behaviourController node to enable or disable
animated behavior as needed. The following summarizes the services supported.

Date: 23/01/2025
Version: No 1.1

Page 13



D5.2 Animate behaviour Subsystem

Table 4: Summary of Supported Services

Service Message Value Effect
/animateBehaviour/
setActivation

enabled, disabled Enable or disable animate behaviour

Services Called

This node does not call any services.

Date: 23/01/2025
Version: No 1.1

Page 14



D5.2 Animate behaviour Subsystem

5 Module Design

The animate behaviour implementation utilizes several ROS message types to enable coordinated
robot motion control. These messages facilitate joint trajectory execution, velocity commands, sensor
feedback, and behaviour activation through action-based communication and service calls. Each mes-
sage type serves a specific purpose in the motion control architecture, from low-level joint commands
to high-level behaviour coordination.

Joint Control Messages
trajectory msgs::JointTrajectoryPoint: It is used to specify precise positions and tim-
ing for each point in the robot’s movement trajectory. It is particularly used in the moveToListOfPos
itions function, where the robot needs to move through a sequence of positions in a smooth,
natural-looking way.

trajectory msgs::JointTrajectory: The message is used in two key functions within the
provided code to define the desired movement path for the robot’s joints. In the moveToPosition
function, it is used to send a single, fixed target position for the robot’s joints to an action server.
In the moveToPositionBiological function, it is used to create a more complex movement
trajectory by generating a sequence of waypoints with their own joint positions and durations. This
structured representation of the joint movements is essential for achieving the natural-looking and
fluid animations that the robot is designed to perform.

control msgs::FollowJointTrajectoryGoal: The message is a ROS message that is
used to define the parameters of joint trajectory actions. It is used in the functions moveToPosition()
and moveToPositionBiological() to control the movements of the robot’s arm, hand, and
legs by sending trajectory goals to the action servers.

Base Motion Control Messages
geometry msgs::Twist: The message type is a ROS message used to represent velocity com-
mands with both linear and angular components, and it is used in the function rotationBaseShift()
to control the robot’s base rotation. Specifically, the angular velocity values along the z-axis are as-
signed to twist.angular.z and published using velPub.publish(twist), allowing the
robot to execute controlled rotational movements.

Action and Service Control Messages
actionlib::SimpleClientGoalState: It is a state tracking message that monitors the exe-
cution status of action goals through states such as PENDING, ACTIVE, and SUCCEEDED. Provides
essential feedback for coordinating robot movements and implementing error handling.

cssr system::setActivation: It is a custom service message type used in the function
setActivation() to enable or disable the animate behaviour system in the CSSR system. Im-
plements a simple request-response pattern, where requests specify the desired state (“enabled” or
“disabled”), and responses indicate success or failure. This message type ensures safe and controlled
activation or deactivation of robot behaviours, providing effective control over the animation state.

Date: 23/01/2025
Version: No 1.1

Page 15



D5.2 Animate behaviour Subsystem

6 Executing the Animate behaviour

To activate the node, it is essential to first understand the key aspects of the animate behaviour. There
are three behaviours in this node: hands and rotation. These values are configured in the settings,
as detailed in Table ??. To further understand the random positions calculated for each joint, refer
to the mathematical details explained in Section ??. This node provides and advertises a server for
the service /animateBehaviour/set activation to enable or disable the operation of the
node. The service accepts a value of "enabled" or "disabled". Depending on the string value
provided, animateBehaviour will be activated or deactivated. For an explanation of additional
configuration values and their functionality, refer to Section ??. This section outlines the detailed steps
required to configure, launch and test the Animate behaviour node for both physical robots and
simulated environments.

6.1 Physical Robot Execution

To execute the Animate behaviour node on a physical robot, follow these steps:

1. Environment Setup

Install all necessary dependencies as per the CSSR4Africa Software Installation Manual. Clone the
repository into the robot’s workspace: Move to the source directory of the workspace:

cd $HOME/workspace/pepper_rob_ws/src

Clone the CSSR4Africa software from the GitHub repository:

git clone https://github.com/cssr4africa/cssr4africa.git

Build the source files:

cd .. && catkin_make

Source the environment:

source devel/setup.bash

2. Configure the Node

The configuration file /animateBehaviourConfiguration.ini and preferred values are set
as shown in the figure below. If you want the desired behaviour (body, hands, rotation, or
All), please set the behaviour you want to run. For an explanation of each configuration value, refer
to Section ??. Otherwise, the preferred values are the ones already set in the configuration file, as
shown in Table ??.

Date: 23/01/2025
Version: No 1.1

Page 16

https://github.com/cssr4africa/cssr4africa/blob/main/docs/D3.3_Software_Installation_Manual.pdf


D5.2 Animate behaviour Subsystem

Table 5: Configuration Parameters for Animate behaviour Node

Parameter Value Type
platform robot string
behaviour all string
simulatorTopics simulatorTopics.dat file
robotTopics pepperTopics.dat file
verboseMode false boolean
rotMaximumRange 0.3 float
selectedRange 0.5 float
armMaximumRange 0.2,0.2,0.2,0.35,0.2 float array
handMaximumRange 0.7 float
legMaximumRange 0.1,0.1,0.08 float array
gestureDuration 1.0 float
numPoints 100 integer
numPointsLeg 2 integer
legRepeatFactor 8 integer

3. Launch the Node

Move to the workspace directory:

cd $HOME/workspace/pepper_rob_ws

Launch the robot:

cd .. && roslaunch cssr_system LaunchRobot.launch \
robot_ip:=172.29.111.240 network_interface:=wlp0s20f3

NOTE

Ensure that the IP address 172.29.111.240 and the network interface wlp0s20f3 are
correctly set based on your robot’s configuration and your computer’s network interface.

Open a new terminal and run the Animate behaviour node:

cd .. && rosrun cssr_system animateBehaviour

To enable animate behaviour, open a new terminal and run the code below.

cd .. && rosservice call /animateBehaviour/setActivation "state: 'enabled
'"

Disable the animate behaviour service:

rosservice call /animateBehaviour/setActivation "state: 'disabled'"

Date: 23/01/2025
Version: No 1.1

Page 17



D5.2 Animate behaviour Subsystem

6.2 Simulator Execution

To execute the Animate behaviour node on a Simulator follow these steps:

1. Environment Setup

Install all necessary dependencies as per the CSSR4Africa Software Installation Manual. Clone the
repository into the robot’s workspace: Move to the source directory of the workspace:

cd $HOME/workspace/pepper_sim_ws/src

Clone the CSSR4Africa software from the GitHub repository:

git clone https://github.com/cssr4africa/cssr4africa.git

Build the source files:

cd .. && catkin_make

Source the environment:

source devel/setup.bash

2. Configure the Node

Update the configuration file located at /workspace/pepper sim ws/src/cssr4africa
/animateBehaviour/config /animateBehaviourConfiguration.ini and set the plat-
form to simulator and select the desired behaviour (body, hands, rotation, or All). If you
want to modify other configuration values, refer to Section ??. Otherwise, the preferred values are the
ones already set in the configuration file.

3. Launch the Node

Move to the workspace directory:

cd $HOME/workspace/pepper_sim_ws

Launch the simulator:

cd .. && roslaunch cssr_system LaunchSimulator.launch

Open a new terminal and run the Animate behaviour node:

cd .. && rosrun cssr_system animateBehaviour

To enable animate behaviour, open a new terminal and run the code below.

Date: 23/01/2025
Version: No 1.1

Page 18

https://github.com/cssr4africa/cssr4africa/blob/main/docs/D3.3_Software_Installation_Manual.pdf


D5.2 Animate behaviour Subsystem

cd .. && rosservice call /animateBehaviour/setActivation "state: 'enabled
'"

Disable the animate behaviour service:

rosservice call /animateBehaviour/setActivation "state: 'disabled'"

Date: 23/01/2025
Version: No 1.1

Page 19



D5.2 Animate behaviour Subsystem

7 Unit Test

The unit test framework for Animate behaviour is designed to test whether the node operates as ex-
pected. It examines four cases: hand, body, rotational, and all movements combined. The framework
validates the correct setup, execution, and logging of these actions in physical and simulated robot
environments. Detailed logs and performance reports are generated using ROS and Google Test to
measure the reliability of the Animate behaviour.

7.1 File Organization and Its Purposes

animateBehaviourTest

config

animateBehaviourTestConfiguration.ini

data

animateBehaviourTestOutput.dat

include

animateBehaviourTest

animateBehaviourTestInterface.h

launch

animateBehaviourLaunchRobot.launch

animateBehaviourLaunchSimulator.launch

animateBehaviourLaunchTestHarness.launch

src

animateBehaviourTestApplication.cpp

animateBehaviourTestImplementation.cpp

CMakeLists.txt

CSSR4AfricaLogo.svg

README.md

Figure 2: Directory structure of the Animate behaviour Test.

The directory structure of the animated behaviour test framework is organized as follows. The src
folder contains animateBehaviourTestApplication.cpp, which manages the main appli-
cation logic, and animateBehaviourTestImplementation.cpp, which provides detailed
test implementations.

The config folder includes animateBehaviourTestConfiguration.ini, a file used to
enable or disable specific tests, such as hand, body, rotation or all movements. The test results are
stored in the data folder within the animateBehaviourTestOutput.dat file. The include
directory contains the header file animateBehaviourTestInterface.h, which defines inter-
faces and utility functions.

The launch folder includes three ROS launch files: animateBehaviourLaunchRobot.launch,

Date: 23/01/2025
Version: No 1.1

Page 20



D5.2 Animate behaviour Subsystem

which launches the robot; animateBehaviourLaunchSimulator.launch, which launches
the simulator; and animateBehaviourLaunchTestHarness.launch, which launches both
the animateBehaviour and animateBehaviourTest nodes. Furthermore, the README.md
file provides documentation for understanding and using the test framework, while CMakeLists.txt
configures the build system.

Configuration File

The operation of the animateBehaviourTest node is determined by the contents of a config-
uration file, animateBehaviourTestConfiguration.ini, that contains a list of key-value
pairs as shown in Table ??.

7.2 Test Cases and Types

The unit tests in the animate behaviour system are implemented using Google Test (gtest), a com-
prehensive C++ testing framework developed by Google that provides essential testing capabilities
including test fixtures, assertions, test case organization, and result reporting. The testing suite imple-
ments four primary test cases:

• Hand movement testing (Test01FlexiHandanimateBehaviour)

• Body movement testing (Test02SubtleBodyanimateBehaviour)

• Rotation testing (Test03RotationanimateBehaviour)

• Combined movement testing (Test04AllanimateBehaviour)

Each test case inherits from a base test fixture class, animateBehaviourRobotTest, which manages test
setup and teardown operations, ensuring consistent test environments and proper resource manage-
ment throughout the testing process.

The testing implementation utilizes Google Test’s assertion system and test execution control to vali-
date movement execution, position accuracy, and system stability. The test framework for the Animate
behaviour system incorporates several key features to ensure comprehensive and reliable testing. Test
configuration is managed through dedicated configuration files, allowing users to selectively activate
or deactivate specific tests based on requirements. Automated reporting is an integral component of
the framework, generating detailed test reports that document results and capture movement data for
thorough analysis. The framework also supports continuous testing, enabling repeated test execution
with user-controlled iterations to ensure consistency and robustness across multiple runs.

Class Implementation

animateBehaviourRobotTest: It is a test class that inherits from testing::Test for unit test-
ing of robot animate behaviour. The class is structured with two static members: testReport
(an ofstream pointer for test output management) and alert (a boolean flag). It includes two
protected methods: SetUp() for disabling animate behaviour before each test and TearDown()
for cleanup and report flushing after each test. The public interface provides two static methods:
setTestReportStream() and getTestReportStream() for managing test reporting. The
test cases are implemented using the TEST F macro from the Google Test framework.

Date: 23/01/2025
Version: No 1.1

Page 21



D5.2 Animate behaviour Subsystem

Configuration Functions: These are standalone helper functions that manage all configuration-
related operations and it include readbehaviourConfig() which reads test settings from con-
figuration files and returns them as a map, writeConfigurationFile() which handles writing
robot configuration parameters, writeInitialConfigurationFile() which sets up initial
behaviour configuration values, and setConfigurationAndWriteFile() which updates spe-
cific behaviour settings in the configuration file. These functions work together to ensure proper test
configuration management and state setup before test execution.

testing::Test + SetUp() + Tear-
Down()

animateBehaviourRobotTest
- static testReport: ofstream*
- static alert: bool + SetUp()
+ TearDown() + setTestReport-
Stream(ofstream&) + getTestRe-
portStream() : ofstream&

Configuration Functions read-
behaviourConfig() writeConfigu-
rationFile() writeInitialConfigu-
rationFile() setConfigurationAnd-
WriteFile()

Log Functions processLogFile()

calls

calls

Figure 3: Class Diagram of animateBehaviourRobotTest System

Log Functions: The processLogFile() function serves as a standalone utility for analyzing and
validating test execution results. It reads log files generated during test execution, captures behaviour
state changes, movement events, configuration settings, and various position data. The function pro-
cesses this information by parsing different message types, tracking movement states, and organizing
data into appropriate structures for test validation. It maintains maps for configuration content, joint
names, home positions, and random positions while ensuring proper file handling and cleanup opera-
tions.

Testing::Test: This is the base class provided by the Google Test framework that defines the funda-
mental structure for test fixtures. It provides virtual SetUp() and TearDown() methods that are
overridden by test classes to implement proper test initialization and cleanup procedures. The class

Date: 23/01/2025
Version: No 1.1

Page 22



D5.2 Animate behaviour Subsystem

serves as the foundation for creating organized and consistent test cases, ensuring proper test lifecycle
management and resource handling throughout the testing process.

7.3 Executing the Animate behaviour Test

Test Environment Setup

Before executing the animate behaviour tests, the testing environment must be properly configured.
Install all necessary dependencies as per the CSSR4Africa Software Installation Manual. Clone the
repository into the robot’s workspace.

Move to the source directory of the workspace:

cd $HOME/workspace/pepper_rob_ws/src

Clone the CSSR4Africa software from the GitHub repository:

git clone https://github.com/cssr4africa/cssr4africa.git

Build the source files:

cd .. && catkin_make

Source the environment:

source devel/setup.bash

This build process compiles all test components, dependencies, and ensures proper integration with
the ROS framework.

Configure the Node

The test execution begins with the configuration file setup in animateBehaviourTestConfigu
ration.ini. This file controls test execution, enabling or disabling specific behaviours. As shown
in Table ??, the platform parameter is set to robot for physical robot testing. To test all the
behaviours, change the behaviour values to one of (hands, body, rotation, or all). Up-
date the configuration file with your preferred settings as needed. The content is the same as the
animateBehaviour configuration, and the default value is set as specified in Table ??.

Launch the Node

Move to the workspace directory:

cd $HOME/workspace/pepper_rob_ws

Launch the robot:

Date: 23/01/2025
Version: No 1.1

Page 23

https://github.com/cssr4africa/cssr4africa/blob/main/docs/D3.3_Software_Installation_Manual.pdf


D5.2 Animate behaviour Subsystem

cd .. && roslaunch unit_tests animateBehaviourLaunchRobot.launch\
robot_ip:=172.29.111.240 network_interface:=wlp0s20f3

NOTE

Ensure that the IP address 172.29.111.240 and the network interface wlp0s20f3 are
correctly set based on your robot’s configuration and your computer’s network interface.

Open a new terminal and run the animateBehaviour and animateBehaviourTest nodes by
launching the animateBehaviourLaunchTestHarness.
Move to the workspace directory

cd $HOME/workspace/pepper_rob_ws

Launch the nodes:

cd .. && roslaunch unit_tests animateBehaviourLaunchTestHarness.launch

Upon launch, the test will be executed based on the configuration values set for each behaviour. After
the completion of each test cycle, the system provides an interactive prompt, allowing the tester to
either continue with another iteration or conclude the testing session. If you want continuous testing,
please press y as shown in the Figure??.

[ INFO] [1734104535.211006577]: Tests completed. Run tests again? (y/n):

Figure 4: Console output showing the completion of tests and prompting for rerun.

The test reports are attached in Appendix I for detailed analysis and to verify that the generated random
positions are centered around the home position. Additionally, all the joints used for each behaviour
are listed.

Date: 23/01/2025
Version: No 1.1

Page 24



D5.2 Animate behaviour Subsystem

Appendix I

=======================================================================
=== New Test Run Started at 2024-12-21 16:52:22 ===
=======================================================================

=======================================================================
Animate behaviour enabled: PASSED
........................................................................
Test 1: Test Flexi Hand Animate behaviour

Configuration Settings:
armMaximumRange : 0.2,0.2,0.2,0.35,0.2
behaviour : hands
gestureDuration : 1.0
handMaximumRange : 0.7
legMaximumRange : 0.1,0.1,0.08
legRepeatFactor : 8
numPoints : 100
numPointsLeg : 2
platform : robot
robotTopics : pepperTopics.dat
rotMaximumRange : 0.3
selectedRange : 0.5
simulatorTopics : simulatorTopics.dat
verboseMode : false

Flexi movement started: PASSED

Joint names:
right hand: ["RHand"]

Ensure the joint moves to the Home position before starting
random movements.The values of the home positions are:

right hand: [0.66608]

After the joint is in the home position, start moving to random
positions continuously.
The random positions captured are:

right hand:
[0.738231]
[0.572753]
[0.684124]
[0.764743]
[0.546761]
[0.838117]

Date: 23/01/2025
Version: No 1.1

Page 25



D5.2 Animate behaviour Subsystem

[0.838036]
[0.838036]
[0.724178]
[0.830661]
[0.740903]
[0.59067]
[0.703302]
[0.755561]
[0.768665]
[0.827754]
[0.66264]
[0.542227]
[0.74655]
[0.652943]

Flexi movement ended: PASSED
.......................................................................

Animate behaviour disabled: PASSED
=======================================================================

=======================================================================
=== New Test Run Started at 2024-12-21 16:47:29 ===
=======================================================================

=======================================================================
Animate behaviour enabled: PASSED
........................................................................
Test 2: Test Subtle Body Animate behaviour

Configuration Settings:
armMaximumRange : 0.2,0.2,0.2,0.35,0.2
behaviour : body
gestureDuration : 1.0
handMaximumRange : 0.7
legMaximumRange : 0.1,0.1,0.08
legRepeatFactor : 8
numPoints : 100
numPointsLeg : 2
platform : robot
robotTopics : pepperTopics.dat
rotMaximumRange : 0.3
selectedRange : 0.5
simulatorTopics : simulatorTopics.dat
verboseMode : false

Subtle body movement started: PASSED

Date: 23/01/2025
Version: No 1.1

Page 26



D5.2 Animate behaviour Subsystem

The joints used for the subtle body movements are:
: ["Wheels"]
left arm: ["LShoulderPitch", "LShoulderRoll", "LElbowRoll",
"LElbowYaw", "LWristYaw"]
leg: ["HipPitch", "HipRoll", "KneePitch"]
right hand: ["RHand"]

Ensure the joint moves to the Home position before starting
random movements.
The values of the home positions are:

: 2.000000
left arm: [1.7625, 0.0997, -0.1334, -1.715, 0.06592]
leg: [-0.0107, -0.00766, 0.03221]
right hand: [0.66608] [0.66608]

After the joint is in the home position, start moving to random
positions continuously.
The random positions captured are:

:
----------[STARTLEFTHANDANIMATEMOVEMENT]-----------
JointNames:["LHand"]
HomePosition:[0.6695]
[0.726706]
[0.738164]
[0.721417]
[0.801147]
[0.504824]
[0.717717]
[0.577764]
[0.667403]
[0.759416]
[0.556816]
[0.818487]
[0.54067]
[0.542645]
[0.768598]
[0.70438]
[0.535285]
[0.56874]

left arm:
[1.72501,0.162002,-0.312676,-1.66499,0.124467]
[1.71977,0.173004,-0.273621,-1.92408,0.21852]
[1.67495,0.167279,-0.340266,-2.03727,0.180508]
[1.41793,0.0537359,-0.389244,-1.58616,0.102452]
[1.6395,0.140949,-0.369843,-1.37216,0.110285]

Date: 23/01/2025
Version: No 1.1

Page 27



D5.2 Animate behaviour Subsystem

[1.52581,0.136457,-0.347886,-1.92289,0.128669]
[1.55881,0.142197,-0.386204,-1.49225,-0.0435256]
[1.45031,0.105648,-0.29062,-1.42718,0.183697]
[1.36519,0.163928,-0.36889,-1.79356,0.138906]
[1.60181,0.099757,-0.393341,-1.71675,-0.0675878]
[1.5167,0.126349,-0.330237,-1.4823,0.180838]
[1.38312,0.140332,-0.331121,-1.81992,0.185301]
[1.47407,0.0871244,-0.397883,-1.3614,-0.0322298]
[1.52184,0.0283132,-0.397756,-1.35755,0.188941]
[1.41735,0.02554,-0.350157,-1.525,-0.020932]
[1.68609,0.11631,-0.402841,-2.0048,-0.104303]
[1.65571,0.122178,-0.420076,-1.40839,-0.0969567]
[1.50185,0.175753,-0.289335,-1.69648,0.0703881]
[1.54095,0.0830216,-0.328928,-1.50464,-0.0966312]
[1.44999,0.14011,-0.296466,-1.51586,-0.107222]

leg:
[-0.0630381,-0.01341,0.0409215]
[-0.0669748,-0.00153459,0.0330461]
[-0.1107,-0.00766,0.03221]
[-0.1107,-0.00766,0.03221]
[-0.1107,-0.00766,0.03221]
[-0.1107,-0.00766,0.03221]
[-0.1107,-0.00766,0.03221]
[-0.1107,-0.00766,0.03221]
[-0.1107,-0.00766,0.03221]
[-0.1107,-0.00766,0.03221]
[-0.1107,-0.00766,0.03221]
[-0.1107,-0.00766,0.03221]
[-0.0749397,0.0122032,0.0208622]
[-0.0788864,-0.0225882,0.0205542]
[-0.1107,-0.00766,0.03221]
[-0.1107,-0.00766,0.03221]
[-0.1107,-0.00766,0.03221]
[-0.1107,-0.00766,0.03221]
[-0.1107,-0.00766,0.03221]
[-0.1107,-0.00766,0.03221]

right hand:
[0.79493]
[0.497658]
[0.499359]
[0.726291]
[0.661207]
[0.769722]
[0.777139]
[0.611445]

Date: 23/01/2025
Version: No 1.1

Page 28



D5.2 Animate behaviour Subsystem

[0.550868]
[0.596061]
[0.595115]
[0.827976]
[0.801416]
[0.799962]
[0.558582]
[0.774794]
[0.590951]
[0.60069]
[0.728943]
[0.619131]
[0.555609]
[0.623146]
[0.565086]
[0.589206]
[0.620317]
[0.571396]
[0.526705]
[0.658601]
[0.794552]
[0.550443]
[0.692201]
[0.778939]
[0.638745]
[0.781342]
[0.728562]
[0.667712]
[0.517182]
[0.693109]
[0.775779]
[0.508294]

Subtle body movement ended: PASSED
.......................................................................
Animate behaviour disabled: PASSED
=======================================================================

=======================================================================
Test Run Completed with Result: PASSED
=======================================================================

=======================================================================
=== New Test Run Started at 2024-12-21 16:44:31 ===
=======================================================================

Date: 23/01/2025
Version: No 1.1

Page 29



D5.2 Animate behaviour Subsystem

=======================================================================
Test 4: Test All Animate behaviour
-----------------------------------------------------------------------------------------------
Initialization:

Animate behaviour enabled: PASSED

Individual Movement Status:
Flexi Hand Movement:

Started: PASSED
Ended: PASSED

Subtle Body Movement:
Started: PASSED
Ended: PASSED

Rotation Movement:
Started: PASSED
Ended: PASSED

Overall Status:
All movements started: PASSED
All movements ended: PASSED
behaviour disabled: PASSED

-----------------------------------------------------------------------
Final Result: PASSED
=======================================================================

=======================================================================
Test Run Completed with Result: PASSED
=======================================================================

Date: 23/01/2025
Version: No 1.1

Page 30



D5.2 Animate behaviour Subsystem

Principal Contributors

The main authors of this deliverable are as follows (in alphabetical order).

David Vernon, CMU-Africa
Eyerusalem Birhan, CMU-Africa
Yohannes Haile, CMU-Africa

Date: 23/01/2025
Version: No 1.1

Page 31



D5.2 Animate behaviour Subsystem

Document History

Version 1.0
First draft.
Eyerusalem Birhan.
21 December 2024.

Version 1.1
Fixed minor typos
I changed set activation to setActivation following the update in the implementation code.
I added a note under Arm Actuator stating that the hand actuator feature is missing in the
simulator
Eyerusalem Birhan.
23 January 2025.

Date: 23/01/2025
Version: No 1.1

Page 32


