
Culturally Sensitive Social Robotics
for Africa

D4.3.2 Speech Event

Due date: 1/10/2024
Submission Date: 20/02/2025

Revision Date: n/a

Start date of project: 01/07/2023 Duration: 36 months

Lead organisation for this deliverable: Carnegie Mellon University Africa

Responsible Person: Clifford Onyonka Revision: 1.0

Project funded by the African Engineering and Technology Network (Afretec)
Inclusive Digital Transformation Research Grant Programme

Dissemination Level
PU Public PU
PP Restricted to other programme participants (including Afretec Administration)
RE Restricted to a group specified by the consortium (including Afretec Administration)
CO Confidential, only for members of the consortium (including Afretec Administration)

D4.3.2 Speech Event

Executive Summary

Deliverable D4.3.2 concerns the results of Task 4.3.2, a task whose objective was to train, test, and fi-
nally deploy a speech-to-text model on a ROS node that will enable speech utterances in Kinyarwanda
and English languages captured by Pepper’s microphones to be transcribed into written text.

This report details the output of each phase of the software development process used in the fulfill-
ment of Deliverable D4.3.2. The requirements definition section specifies the functional requirements
of the users of Speech Event, the module specification section outlines the functional characteristics
of Speech Event, the interface design section outlines the specification of the inputs and outputs of
Speech Event, the module design section describes the deep neural networks that perform speech
recognition of Kinyarwanda and English utterances, the testing section shows the results and descrip-
tions of unit and end-to-end tests of Speech Event, and the user manual section outlines how to build
and run Speech Event.

Date: 20/02/2025
Version: No 1.0

Page 2

D4.3.2 Speech Event

Contents

1 Introduction 4

2 Requirements Definition 5

3 Module Specification 6

4 Interface Design 7
4.1 Source Code . 7
4.2 Configuration Files . 8
4.3 Topics Subscribing To . 10
4.4 Topics Publishing To . 10
4.5 Launch Files . 10

5 Module Design 11
5.1 Model Architecture . 11

5.1.1 Preprocessor . 11
5.1.2 Encoder Architecture . 11
5.1.3 Decoder/Predictor Architecture . 12
5.1.4 Joint Network Architecture . 13
5.1.5 Combined Model Architecture . 14

6 Testing Report 15
6.1 Unit Testing . 15
6.2 End-to-end Testing . 18

7 User Manual 19
7.1 Installation . 19
7.2 Usage . 19
7.3 Graphical User Interface . 20
7.4 Driver ROS Node . 20

References 21

Principal Contributors 22

Document History 23

Date: 20/02/2025
Version: No 1.0

Page 3

D4.3.2 Speech Event

1 Introduction

Conversational systems are developed using the following main components: automatic speech recog-
nition (speech-to-text), natural language understanding, dialogue manager, natural language genera-
tion, and text-to-speech. Speech-to-text converts an audio signal containing spoken speech utterances
to written text transcriptions, natural language understanding analyses the transcribed text to extract
meaning, the dialogue manager generates a response based on the inferred meaning of the text, natural
language generation formulates text based on the response generated by the dialogue manager, and
text-to-speech synthesises spoken speech utterances to be played to the other agent(s) in the conver-
sation cycle [1]. Such a system is displayed in Fig 1.

Automatic
Speech

Recognition

Conversational System

Natural
Language

Understanding
Dialogue
Manager

Natural
Language
Generation

Text-to-Speech

Human Speaker

Figure 1: A diagrammatic representation of a conversational system [1]

The Speech Event module only handles one component of the conversational system described
in the previous paragraph, that is, speech-to-text (which is referred to as automatic speech recogni-
tion in Fig 1). It acquires audio signals published on the /soundDection/signal ROS topic,
and then passes these audio signals through a deep neural network that transcribes speech utterances
contained within the audio to generate text strings representations, which are then published on the
/speechEvent/text ROS topic. Kinyarwanda and English are the two languages that are tran-
scribed by Speech Event, with the choice of language set via a configuration option in a configuration
file.

Date: 20/02/2025
Version: No 1.0

Page 4

D4.3.2 Speech Event

2 Requirements Definition

A running Speech Event ROS node performs one main function - Kinyarwanda and English speech
recognition. An audio signal is received via the /soundDetection/signal ROS topic, and
Speech Event transcribes any speech utterances detected in the signal to either Kinyarwanda or En-
glish.

In order to successfully perform this function, the following functional requirements need to be
fulfilled by Speech Event:

1. Acquire an audio signal from the /soundDetection/signal ROS topic

2. Pass the audio signal through an automatic speech recognition (ASR) model to transcribe any
speech utterances the audio signal contains to either Kinyarwanda or English text

3. Publish the transcribed text to the /speechEvent/text ROS topic

The exact language between Kinyarwanda and English which a running Speech Event ROS node
will transcribe is decided based on a configuration option that is set in a configuration file that is
loaded at the initialisation stage when the ROS node is started.

To supplement the core requirement that Speech Event performs (Kinyarwanda and English speech
recognition), the text transcriptions that Speech Event will transcribe will be displayed on a graphical
interface. The graphical interface will be used as a replacement for the terminal interface, especially
in presentation settings where displaying text transcriptions on the terminal is impractical due to the
small font size used by the terminal and the extra verbosity of the results displayed on the terminal.

A ROS node that emulates Sound Detection will also be developed, and its main purpose will be
to showcase the working of Speech Event in isolation, separated from the rest of the CSSR4Africa
system and from the Pepper robot. This ROS node will capture audio from the computer on which
Speech Event will be running on, and publishing the captured audio to the same ROS topic that Sound
Detection publishes to (/soundDetection/signal), therefore mimicking Sound Detection’s
operation of acquiring audio from Pepper and publishing it to the aforementioned ROS topic.

It is also worth noting that Sound Detection may fail, and since the Behaviour Controller does not
directly interface with Sound Detection, the Speech Event ROS node bears the burden of signaling
failures that may arise in Sound Detection to the Behaviour Controller. This is done by publishing the
message ‘Error: soundDetection is down’ on the /speechEvent/text ROS topic.

Date: 20/02/2025
Version: No 1.0

Page 5

D4.3.2 Speech Event

3 Module Specification

A running Speech Event ROS node performs speech-to-text in real-time, acquiring an audio signal
from the /soundDetection/signal ROS topic, generating a text description of the acquired au-
dio, and then publishing transcribed text to the /speechEvent/text ROS topic as soon as speech
utterances are detected in the audio signal. The data that is input to Speech Event, the transformation
that this data undergoes, and the data that Speech Event outputs is described below:

1. An audio signal published by Sound Detection to the /soundDetection/signal ROS topic is ac-
quired by Speech Event

2. The acquired audio signal is then passed through an ASR model that transcribes speech utter-
ances present within the audio signal to text strings

3. The text strings output by the ASR model are then published to the /speechEvent/text
ROS topic for the Behaviour Controller to use

This process, and the position of Speech Event within the CSSR4Africa system architecture, is
captured in Fig 2.

soundDetection

speechEvent

behaviourController

/soundDetection/signal

/speechEvent/text

Figure 2: Speech Event within the CSSR4Africa architecture

Date: 20/02/2025
Version: No 1.0

Page 6

D4.3.2 Speech Event

4 Interface Design

4.1 Source Code

The file structure of Speech Event is as shown below:

speech event/
config/

speech event configuration.ini
speech event driver.ini
speech event tests.ini

gui/
main .py

launch/
speech event launch robot.launch
speech event launch test harness.launch

src/
speech event/

init .py
speech event config parser.py
speech event implementation.py

speech event application.py
speech event driver.py
speech event gui.py

tests/
data/

audio.wav
config.ini

init .py
test config parser.py
test speech event.py

.gitignore
CMakeLists.txt
package.xml
README.md
requirements.txt
setup.py

The config/ directory houses configuration files that are used to configure different ROS nodes
that are part of Speech Event:

1. speech event configuration.ini: configurations for the main Speech Event ROS
topic

2. speech event driver.ini: configurations for a Speech Event driver ROS node that
mimics Sound Detection, but captures audio from a personal computer’s microphones rather

Date: 20/02/2025
Version: No 1.0

Page 7

D4.3.2 Speech Event

than from Pepper’s microphones

3. speech event tests.ini: configurations for a ROS node that is used when running
Speech Event unit and end-to-end tests

The gui/ directory holds a python script that enables running as a python module the GUI in-
terface that is used to monitor the /speechEvent/text ROS topic. When the current working
directory is the Speech Event directory, the GUI interface can be run as a python module as follows:
python3 -m gui.

The launch/ directory holds ROS launch files that are used to bringing up either the Speech
Event system or the testing system using a single terminal command:

1. speech event launch robot.launch: used to bring up the whole Speech Event sys-
tem using a single terminal command

2. speech event launch test harness.launch: used to bring up the whole testing
system using a single terminal command

The src/ directory holds all the python source code files that implement the Speech Event
system together with the GUI application and driver application. Within the src/ directory is
the speech event/ subdirectory. This subdirectory is used by the setup.py script to config-
ure Speech Event as a python package that can be easily installed by CATKIN when running the
catkin make command.

The tests/ directory contains unit tests and end-to-end tests for Speech Event. Unit tests are
used to test individual components of Speech Event in isolation, while end-to-end tests are used to
test all components of Speech Event working together in unison to obtain an audio signal from the
/soundDetection/signal, transcribe it, and then publish the generated text to the ROS topic
/speechEvent/text. In essence, end-to-end tests in this case are integration tests that test all the
components of Speech Event working together. The data/ subdirectory in the tests/ directory
holds data that is used as test fixtures for the unit tests and end-to-end tests.

The file .gitignore lists directories and files that are to be excluded from git, CMakeLists.txt
and package.xml are required by CATKIN to denote Speech Event as a ROS package together
with all packages that Speech Event depends on, README.md contains documentation of how to use
Speech Event, and requirements.txt contains a list of versioned Python packages that Speech
Event depends on.

4.2 Configuration Files

A running Speech Event ROS node requires to be configured prior to starting it, a task that is accom-
plished via a configuration file that is stored as plain text. The configuration parameters stored in a
configuration file as displayed in Table 1.

Date: 20/02/2025
Version: No 1.0

Page 8

D4.3.2 Speech Event

Key Value Description
language kinyarwanda or

english
The language of speech utterances to be in-
gested by ASR models

verbose mode true or false Whether to print informational messages to
the terminal

rw model path <string> Path to the Kinyarwanda ASR model
en model path <string> Path to the English ASR model
audio storage dir <string> Path to directory that will store audio cap-

tured from /soundDetection/signal
ROS topic

cuda true or false Whether to use GPU or CPU for running
model inference (True means use GPU, False
means use CPU)

sample rate <integer> The sample rate of audio signals captured
from the /soundDetection/signal
ROS topic

Table 1: Speech Event configuration file options

A running driver ROS node also requires to be configured prior to starting it. Its configuration
parameters are stored in a configuration file as displayed in Table 2. (A driver ROS node mimics
Sound Detection, capturing audio from a personal computer’s microphone instead of from Pepper,
and publishing the audio signal to /soundDetection/signal topic in the same way as Sound
Detection does).

Key Value Description
channels <integer> Number of output channels for the audio cap-

tured from the personal computer’s micro-
phones

chunk size <integer> Number of audio samples to be read per it-
eration from the personal computer’s micro-
phones

sample rate <integer> Sample rate to use when capturing audio
speech amplitude
threshold

<float> Threshold for segmenting silence and non-
silence regions in the captured audio (non-
silence regions are assumed to contain speech
utterances)

utterance time
buffer

<integer> Number of padding samples around non-
silence audio regions

Table 2: Driver configuration file options

Date: 20/02/2025
Version: No 1.0

Page 9

D4.3.2 Speech Event

4.3 Topics Subscribing To

A running Speech Event ROS node acquires audio signals from the /soundDetection/signal
ROS topic. Table 3 shows this fact, while also mentioning the ROS node that publishes these audio
signals.

Topic Node Platform
/soundDetection/signal soundDetection Physical robot

Table 3: Topics subscribing to

4.4 Topics Publishing To

The Speech Event ROS node publishes transcribed text to the /speechEvent/text ROS topic,
publishing each time a transcription process completes. The published text transcriptions are of the
string data type. Table 4 shows the ROS topic that Speech Event publishes to.

Topic Node Platform
/speechEvent/text behaviourController Physical robot

Table 4: Topics publishing to

4.5 Launch Files

Two launch files are defined in Speech Event’s source code:

1. speech event launch robot.launch: used to bring up the whole Speech Event sys-
tem when performing speech transcription

2. speech event launch test harness.launch: used to bring up the whole testing
system for Speech Event when running Speech Event tests

Date: 20/02/2025
Version: No 1.0

Page 10

D4.3.2 Speech Event

5 Module Design

5.1 Model Architecture

Both the Kinyarwanda and English speech recognition processes performed by Speech Event rely on
deep learning models. Both of these deep learning models are based on the conformer transducer
architecture, and the specific models that are used by Speech Event were acquired from NVIDIA’s
Nemo catalog of models.

The conformer transducer architecture is made up of a conformer encoder and a transducer de-
coder. The conformer encoder combines transformers and Convolution Neural Networks (CNNs) in
an attempt to utilise the strengths of both, with transformers excelling at capturing global dependen-
cies of an audio signal and CNNs excelling at capturing local dependencies of an audio signal [2]. The
transducer decoder, on the other hand, makes use of Recurrent Neural Networks (RNNs) to form an
autoregressive model whose next token prediction is conditioned on the previously predicted tokens.

5.1.1 Preprocessor

When an audio signal is received, it is first passed through a preprocessor block that extracts filterbank
features from the audio signal. For this process, an audio signal is first converted to a spectrogram
by a Short Time Fourier Transform (STFT), and then a series of filters are applied to the resultant
spectrogram to obtain the filterbank features that each represent the magnitude of the energy within a
distinct frequency band. This preprocessor block is visualised in Fig 3.

Preprocessor
block

Audio signal

Filterbank features

Figure 3: Audio to filterbank features preprocessor

5.1.2 Encoder Architecture

The filterbank features obtained from the preprocessor block are then passed to the encoder part of
the model. The encoder transforms acoustic features in the original audio signal captured within the
filterbank features into latent features that better represent the speech in the original audio signal.

A conformer encoder is shown in Fig 4. The encoder used in Speech Event has 17 conformer
blocks.

The filterbank features are first passed through a SpecAugment block. SpecAugment is a data
augmentation method that is suitable for end-to-end speech recognition models such as the Conformer
Tranducer model used by Speech Event. “The augmentation policy consists of warping the features,
masking blocks of frequency channels, and masking blocks of time steps” [3].

The features are then processed by a convolution subsampling block, dropout applied, and then
passed through the series of 17 conformer blocks in the encoder.

Date: 20/02/2025
Version: No 1.0

Page 11

D4.3.2 Speech Event

Conformer
Blocks

x 17

Dropout

Linear

Convolution
Subsampling

SpecAug

Layernorm

+

Feed Forward
Module

+

Convolution
Module

+

Multi-Head
Self-Attention

Module

+

Feed Forward
Module

Figure 4: Conformer encoder architecture [2]

Each confomer block consists of a multi-head self-attention module and a convolution module
collectively sandwiched between two feedforward modules [2]. The self-attention module is more
adept at capturing global feature dependencies while the convolution module is more adept at captur-
ing local feature dependencies, thereby capturing the semantics of speech utterances much better than
models that only specialise in capturing only either of the global or local feature dependencies.

5.1.3 Decoder/Predictor Architecture

Keeping in line with Gulati et al., a single LSTM layer is used in the decoder [2]. An embedding
layer converts input tokens into vectorised representations that are then passed to the LSTM layer.
Additionally, drop out is applied both in the LSTM layer and on the output of the LSTM layer.

The decoder architecture used in Speech Event is shown in Fig 5.

Date: 20/02/2025
Version: No 1.0

Page 12

D4.3.2 Speech Event

Dropout

LSTM with
Dropout

Embedding
Layer

Figure 5: Transducer predictor architecture

5.1.4 Joint Network Architecture

The joint network combines the output of the encoder and the output of the decoder in order to predict
the text in the speech utterances contained in the original sound signal passed to the encoder. The
combined outputs are then passed through a ReLU activation, dropout applied, and lastly passed
through a linear layer.

The joint network architecture used in Speech Event is shown in Fig 6.

Linear

Dropout

ReLU

+

Encoder Linear
Predictor

Linear

Figure 6: Joint architecture

Date: 20/02/2025
Version: No 1.0

Page 13

D4.3.2 Speech Event

5.1.5 Combined Model Architecture

The four different sections of the full conformer transducer architecture discussed above are combined
together to form the whole network that performs end-to-end automatic speech recognition. This full
model’s architecture is summaried in Fig 7.

Joint Network

Encoder Predictor

Preprocessor

Figure 7: Combined model architecture

Date: 20/02/2025
Version: No 1.0

Page 14

D4.3.2 Speech Event

6 Testing Report

The tests/ directory contains unit tests and end-to-end tests. The unit tests test in isolation func-
tions that implement Speech Event, while the end-to-end tests test the whole Speech Event as a whole
(from when audio signals are captured from the /soundDetection/signal ROS topic to when
transcribed text is published on the /speechEvent/text ROS topic). The unittest python test-
ing framework is used for these tests, meaning that to run the tests the command python3 -m
unittest is used (the -v flag is used when increased verbosity is required). The unittest package is
part of the standard python library, and therefore no extra packages need to be installed when running
tests. The end-to-end tests provided for Speech Event require a ROS master node to be running, and
therefore roscore needs to be run in a separate terminal before running tests.

6.1 Unit Testing

Four unit tests are provided in Speech Event. The first unit test tests the initialisation function (the
function that, at the start of a Speech Event ROS node, reads a configuration file and sets up Speech
Event to operate with required settings such as the language to be transcribed). Fig 8 shows the results
of running this test.

Figure 8: Test report for Speech Event’s initialisation function

Date: 20/02/2025
Version: No 1.0

Page 15

D4.3.2 Speech Event

The second unit test tests the save audio function (this function saves an audio signal to storage as
a .wav file, and this wav file is then passed to the ASR model that transcribes speech in the next phase
of the speech-to-text process). Fig 9 shows the results of running this test.

Figure 9: Test report for Speech Event’s save audio function

The third unit test tests the get audio transcription function (this function uses an ASR deep learn-
ing model to transcribe an audio signal, generating a text string representation of any speech utterances
contained within the audio signal). Fig 10 shows the results of running this test.

Date: 20/02/2025
Version: No 1.0

Page 16

D4.3.2 Speech Event

Figure 10: Test report for Speech Event’s get audio transcription function

The last unit test tests the parse function (this function parses an ini configuration file and gener-
ates its python dictionary representation, and this function is re-used everywhere an ini configuration
file needs to be read and parsed - the ini specification used by CSSR4Africa does not follow the stan-
dardised ini file specification, and therefore cannot be parsed by standard ini libraries provided by
the standard python library, which necessitates creation of a custom ini file parser). Fig 11 shows the
results of running this test.

Date: 20/02/2025
Version: No 1.0

Page 17

D4.3.2 Speech Event

Figure 11: Test report for Speech Event’s parse function

6.2 End-to-end Testing

One end-to-end test is provided in Speech Event. A running ROS master node is needed to run this
test because this test necessitates creation of a full-fledged ROS node when it is run, and therefore
roscore needs to be run on a separate terminal before running this test. It tests the whole Speech
Event ROS node as a unit, from the capture of audio signals from the /soundDetection/signal
ROS topic to the final step of publishing transcribed text to the /speechEvent/text ROS topic.
Fig 12 shows the results of running this test.

Date: 20/02/2025
Version: No 1.0

Page 18

D4.3.2 Speech Event

Figure 12: Test report for Speech Event’s parse function

7 User Manual

7.1 Installation

The Speech Event package needs to be installed before it can be used. To install Speech Event, clone
the Speech Event repository to the CSSR4Africa workspace, and then proceed with the following
steps:

1. Install required packages

(a) Install required Ubuntu packages: sudo apt-get install cython3 ffmpeg
gfortran libopenblas-dev libopenblas64-dev patchelf pkg-config
python3-testresources python3-typing-extensions sox

(b) Install required python packages: pip3 install -r requirements.txt (the
requirements.txt file is located in the Speech Event root directory)

2. Install Speech Event: roscd && cd ../ && catkin make

7.2 Usage

To run a Speech Event ROS node, a Sound Detection ROS node needs to also be running (or a Speech
Event driver node, which is described in a subsequent subsection).

Date: 20/02/2025
Version: No 1.0

Page 19

D4.3.2 Speech Event

1. Run a Speech Event ROS node: rosrun speech event speech event application.py
-c CONFIG (where CONFIG is the path to a configuration ini file; an editable configuration
file is provided in the config/ directory)

2. View text transcriptions on the terminal (optional): rostopic echo /speechEvent/text

7.3 Graphical User Interface

A graphical interface is provided to display the text transcriptions that are being published on the
/speechEvent/text ROS topic on a more user friendly interface compared to the terminal inter-
face. To view text transcriptions on this graphical interface:

1. Install Tk: sudo apt-get install python3-tk

2. Run the GUI application: rosrun speech event speech event gui.py (or python3
-m gui if the current working directory is set to the Speech Event root directory)

7.4 Driver ROS Node

A driver ROS node that mimics the Sound Detection ROS node is also provided. It capturing audio
from a personal computer’s microphone instead of from Pepper, and publishes the audio signal on
the /soundDetection/signal ROS topic in the same way that the Sound Detection ROS node
does. To bring up this driver ROS node:

1. Install required Ubuntu packages: sudo apt-get install libasound-dev portaudio19-dev
libportaudio2 libportaudiocpp0 libav-tools

2. Run a driver ROS node: rosrun speech event speech event driver.py -c CONFIG
(where CONFIG is the path to a configuration ini file; an editable configuration file is provided
in the config/ directory)

Date: 20/02/2025
Version: No 1.0

Page 20

D4.3.2 Speech Event

References

[1] Cristina Romero-González, Jesus Martı́nez-Gómez, and Ismael Garcı́a-Varea. Spoken language
understanding for social robotics. In 2020 IEEE International Conference on Autonomous Robot
Systems and Competitions (ICARSC), pages 152–157, April 2020.

[2] Anmol Gulati, James Qin, Chung-Cheng Chiu, Niki Parmar, Yu Zhang, Jiahui Yu, Wei Han,
Shibo Wang, Zhengdong Zhang, Yonghui Wu, and Ruoming Pang. Conformer: Convolution-
augmented Transformer for Speech Recognition. In Interspeech 2020, pages 5036–5040. ISCA,
October 2020.

[3] Daniel S. Park, William Chan, Yu Zhang, Chung-Cheng Chiu, Barret Zoph, Ekin D. Cubuk,
and Quoc V. Le. SpecAugment: A Simple Data Augmentation Method for Automatic Speech
Recognition. In Interspeech 2019, pages 2613–2617. ISCA, September 2019.

Date: 20/02/2025
Version: No 1.0

Page 21

D4.3.2 Speech Event

Principal Contributors

The main authors of this deliverable are as follows (in alphabetical order).

Clifford Onyonka, Carnegie Mellon University Africa.
David Vernon, Carnegie Mellon University Africa.
Richard Muhirwa, Carnegie Mellon University Africa.

Date: 20/02/2025
Version: No 1.0

Page 22

D4.3.2 Speech Event

Document History

Version 1.0
First draft.
Clifford Onyonka.
20 February 2025.

Date: 20/02/2025
Version: No 1.0

Page 23

	Introduction
	Requirements Definition
	Module Specification
	Interface Design
	Source Code
	Configuration Files
	Topics Subscribing To
	Topics Publishing To
	Launch Files

	Module Design
	Model Architecture
	Preprocessor
	Encoder Architecture
	Decoder/Predictor Architecture
	Joint Network Architecture
	Combined Model Architecture

	Testing Report
	Unit Testing
	End-to-end Testing

	User Manual
	Installation
	Usage
	Graphical User Interface
	Driver ROS Node

	References
	Principal Contributors
	Document History

