
Culturally Sensitive Social Robotics
for Africa

D4.2.4 Robot Localization

Due date: 26/02/2025
Submission Date: 15/03/2025

Revision Date: n/a

Start date of project: 01/07/2023 Duration: 36 months

Lead organisation for this deliverable: Carnegie Mellon University Africa

Responsible Person: Ibrahim Olaide Jimoh Revision: 1.0

Project funded by the African Engineering and Technology Network (Afretec)
Inclusive Digital Transformation Research Grant Programme

Dissemination Level
PU Public PU
PP Restricted to other programme participants (including Afretec Administration)
RE Restricted to a group specified by the consortium (including Afretec Administration)
CO Confidential, only for members of the consortium (including Afretec Administration)

D4.2.4 Robot Localization

Executive Summary
Deliverable D4.2.4 Robot Localization focuses on the development of a software module that estimates the
pose (position and orientation) of the Pepper robot in a Cartesian world frame of reference. The module
achieves this through a combination of relative and absolute position estimation techniques, including
odometry, IMU data, and triangulation using visual landmarks. For the relative position, the odometry and
IMU data is derived from the Pepper robot’s built-in wheel encoders and inertial measurement unit (IMU)
sensors, which provide continuous updates on the robot’s movement. For absolute position estimation,
the module integrates visual detection of ArUco markers as landmarks using an Intel RealSense camera
system, enabling correction of accumulated drift and enhancing localization accuracy. The functionality is
implemented as a ROS node named robotLocalization, which continuously updates the robot’s pose
in real time. The deliverable outlines the software development process, including requirements definition,
module specification, module design, implementation details, running the module, and unit testing. The
test evaluates the developed module to ensure its reliability.

Date: 15/03/2025
Version: No 1.0

Page 2

D4.2.4 Robot Localization

Contents
1 Introduction 4

2 Requirements Definition 5

3 Module Specification 6

4 Module Design 7
4.1 Relative Localization . 7
4.2 Absolute Localization . 8

5 Implementation 11
5.1 File Organization . 11
5.2 Configuration File . 11

6 Running the Robot Localization Node 14

7 Unit Testing 15

References 16

Principal Contributors 17

Document History 18

Date: 15/03/2025
Version: No 1.0

Page 3

D4.2.4 Robot Localization

1 Introduction
This deliverable represents the output of Task 4.2.4, aimed at developing a software module for esti-
mating the robot’s pose in a Cartesian world frame of reference. The objective is achieved through
relative pose estimation methods and absolute pose estimation using visual landmarks. The ROS node
robotLocalization implements this functionality, providing continuous and real-time pose estima-
tion for the Pepper robot in various operational scenarios.

Accurate robot localization, the process of determining a robot’s position and orientation within its
environment, is essential for effective and safe interaction with humans and objects, particularly in dynamic
social contexts. In culturally sensitive environments, precise localization allows robots to navigate human-
populated areas, communicate intentions clearly, perform nuanced interactions without causing discomfort
or misunderstanding, and most importantly, arrive precisely at its intended goal [1]. This report addresses
the development of a localization module for the Pepper robot in the CSSR4Africa project.

Localization challenges typically include sensor inaccuracies, environmental unpredictability, and cu-
mulative errors or drift from odometry-based methods. To address these issues, the localization module
utilizes a combination of relative and absolute localization techniques. Relative localization is achieved
through data fusion from the Pepper robot’s wheel encoders (odometry) and inertial measurement unit
(IMU) sensors, providing a continuous, incremental estimate of the robot’s movement. However, these
methods alone can lead to significant drift over time, necessitating periodic recalibration.

To mitigate this drift and maintain high localization accuracy, the developed module integrates absolute
localization using visual landmarks, specifically ArUco markers. By recognizing these predefined land-
marks with an onboard RGB-D camera (RealSense), the robot can periodically correct accumulated errors,
ensuring reliable pose estimation over extended periods. The successful integration of relative and absolute
localization methods ensures continuous, real-time accuracy of the robot’s position.

This deliverable fully documents the localization module development process, providing detailed re-
port into the requirements definition, system specifications, module design, implementation procedures,
and testing. Adherence to established project standards specified in Deliverable D3.2 ensures maintainabil-
ity, reliability, and seamless integration with other system components.

Date: 15/03/2025
Version: No 1.0

Page 4

https://cssr4africa.github.io/deliverables/CSSR4Africa_Deliverable_D3.2.pdf

D4.2.4 Robot Localization

2 Requirements Definition
The robot localization module provide accurate and real-time pose estimation, addressing both position
and orientation of the robot in a Cartesian world frame. Relative pose estimation will rely on odometry
data and the robot’s IMU, while absolute pose estimation will use triangulation based on visual landmarks
recognized. The module supports input from RGB and depth cameras, as well as the encoder on the head
yaw actuator. Outputs will include the robot’s 2D pose (x, y, and rotation about the Z-axis) and annotated
images with bounding boxes around detected landmarks.

The primary objective of the robot localization module is to provide accurate and reliable real-time
pose estimation to facilitate effective robot navigation, interaction, and task execution within dynamic
environments. To achieve this, several key requirements were established.

Firstly, the module must deliver continuous, real-time pose estimation, clearly defining the robot’s
position as Cartesian coordinates (x, y) and its orientation (yaw angle) within a predefined global coordinate
frame. This real-time estimation capability is essential for enabling seamless navigation and precise arrival
at its intended goal.

Secondly, the localization module is required to integrate data from Pepper’s built-in wheel encoders
and inertial measurement unit (IMU) sensors. This approach ensures an ongoing estimation of robot dis-
placement and orientation changes. However, recognizing the inherent limitations of relative localization
techniques, especially the accumulation of drift errors over time, the module must incorporate absolute
localization capabilities to recalibrate periodically and correct these cumulative errors.

For absolute localization, visual landmark detection through ArUco markers has been mandated due
to its effectiveness, simplicity, and robustness. The module must accurately identify these visual mark-
ers using the onboard RGB-D RealSense camera, calculate their positions relative to known, predefined
locations, and accordingly update the robot’s global pose estimate.

Finally, for ease of debugging, validation, and monitoring, the module must provide annotated visual-
ization frames indicating clearly detected ArUco landmarks and the calculated pose estimations. In verbose
mode, the pose estimates published to the localization topic and absolute localization update status must
be printed to the terminal.

Date: 15/03/2025
Version: No 1.0

Page 5

D4.2.4 Robot Localization

3 Module Specification
The Robot Localization module is specifically designed as a ROS node, robotLocalization, that
combines sensor inputs to produce precise robot pose estimates in real-time. This section details the input
data types, processing methods, output formats, and system configurations involved.

Sensor Inputs
The module accepts three primary inputs: odometry data, IMU sensor readings, and RGB-D images from
the onboard RealSense camera. Odometry data provides incremental displacement estimates derived from
wheel encoder signals, essential for tracking relative robot movements. IMU sensor data, including linear
accelerations and angular velocities, complements odometry by providing a detailed account of the robot’s
orientation changes.

The third input is visual data captured by the RealSense RGB-D camera system, which is crucial for ab-
solute localization. The module processes these visual inputs to detect predefined visual landmarks (ArUco
markers) positioned at known coordinates within the robot’s operational environment. By identifying these
markers and their corresponding known locations, the module calculates precise corrections to the robot’s
estimated pose by triangulation.

Output Data
The primary outputs of the localization module include continuous pose estimates, defined by Cartesian co-
ordinates (x, y) and orientation (yaw angle), published on the ROS topic /robotLocalization/pose.
The module also provides a /robotLocalization/reset pose service to reset the robot’s pose
using the absolute pose estimation. Additionally, the module provides annotated visual outputs via an
OpenCV window, clearly marking detected landmarks within RGB-D camera frames for verification and
debugging purposes.

System Configuration
The module reads from a configuration file (robotLocalizationConfiguration.ini) that pro-
vides platform-specific parameters, such as the sensor and actuator topics, camera type, and pose reset
intervals. This ensures the module can be easily adapted to different configurations without altering its
core logic.

Date: 15/03/2025
Version: No 1.0

Page 6

D4.2.4 Robot Localization

4 Module Design
The Robot Localization module employs a structured approach that integrates distinct subsystems to ensure
accurate and robust pose estimation. The design incorporates two primary subsystems: relative localization
and absolute localization, unified through sensor fusion techniques.

4.1 Relative Localization
The relative localization subsystem primarily relies on odometry and inertial measurements. Wheel en-
coder data provides incremental position updates based on wheel rotations, translating these into displace-
ment estimates. Simultaneously, IMU data, encompassing linear accelerations and angular velocities, helps
accurately determine orientation and corrects odometry-derived displacement measurements, especially
during rapid movements or when encountering slippery surfaces.

Odometry data processing

The functionality processes odometry data from the robot and applies an initial pose adjustment. This
ensures the localization system maintains an accurate and consistent reference frame.

From the received ROS Odometry message, the position (x, y) and orientation θ (yaw angle) are
extracted as follows:

xodom = msg.pose.pose.position.x (1)

yodom = msg.pose.pose.position.y (2)

The yaw angle θodom is computed from the quaternion representation:

θodom = 2 · tan−1

(
msg.pose.pose.orientation.z
msg.pose.pose.orientation.w

)
(3)

To align the odometry readings with the global reference frame, an initial offset is applied:

x′ = xodom + adjustmentx − xinitial (4)

y′ = yodom + adjustmenty − yinitial (5)

The adjusted position is rotated using a 2D rotation matrix to align with the global coordinate system:

xcurrent = x′ cos(adjustmentθ)− y′ sin(adjustmentθ) (6)

ycurrent = x′ sin(adjustmentθ) + y′ cos(adjustmentθ) (7)

The final global pose correction is then applied:

xcurrent = xcurrent + xinitial (8)

ycurrent = ycurrent + yinitial (9)

The corrected orientation is computed as:

θcurrent = θodom + adjustmentθ (10)

The computed pose (x, y, θ) is published as a Pose2D message, with θ converted to degrees:

θdeg = θcurrent ×
180

π
(11)

This ensures the corrected pose is available for localization, mapping, and further processing.

Date: 15/03/2025
Version: No 1.0

Page 7

D4.2.4 Robot Localization

4.2 Absolute Localization
Given the limitations of relative localization methods, particularly the accumulation of drift errors, the de-
sign incorporates absolute localization techniques utilizing visual detection of ArUco markers. The abso-
lute localization subsystem is tasked with processing visual data streams from the onboard Intel RealSense
RGB-D camera. Computer vision OpenCV techniques identify ArUco markers placed at known locations
within the robot’s operational space, precisely computing their relative positions to recalibrate and correct
the estimated pose provided by the relative localization subsystem.

Landmark-based pose estimation
The functionality processes images from the camera and detects ArUco markers for localization. If suf-
ficient time has passed since the last update, the function extracts marker poses and updates the robot’s
position by triangulation. Each detected marker provides an estimate of the robot’s pose relative to the
marker. The detection is performed using:

cv::aruco::detectMarkers(image, dictionary,marker corners,marker ids, parameters). (12)

If markers are detected, their poses are estimated using:

cv::aruco::estimatePoseSingleMarkers(marker corners,marker size, camera matrix, dist coeffs, rvecs, tvecs).
(13)

Here, rvecs and tvecs represent the rotation and translation vectors of the markers with respect to the
camera.

Transformation to the global frame

Each detected marker has a known position in the environment reference frame (Xm, Ym,Θm), and its
pose relative to the camera is given by (Xc, Yc,Θc). The robot’s absolute position is computed by applying
a coordinate transformation:

Xrobot = Xm + cos(Θm)Xc − sin(Θm)Yc (14)

Yrobot = Ym + sin(Θm)Xc + cos(Θm)Yc (15)

Θrobot = Θm +Θc (16)

The resulting orientation is normalized to lie within (−180◦, 180◦):

Θrobot = ((Θrobot + 180) mod 360)− 180. (17)

Pose update condition

To avoid unnecessary updates, the robot pose is only updated if the movement exceeds a given threshold
(reset interval):

dmoved =
√
(Xfinal −Xlast)2 + (Yfinal − Ylast)2 (18)

θmoved = |Θfinal −Θlast|. (19)

If dmoved is below the movement threshold and θmoved is below the rotation threshold, the update is
skipped. Otherwise, the updated pose is published as a ROS PoseStamped message:

θquat = tf::createQuaternionMsgFromYaw
(
Θfinal ×

π

180

)
. (20)

Date: 15/03/2025
Version: No 1.0

Page 8

D4.2.4 Robot Localization

Algorithm 1 Landmark-Based Absolute Localization (Triangulation)
1: Initialization
2: Inputs:
3: Camera’s intrinsic parameters (e.g., K, D) — camera matrix and distortion coefficients.
4: Known positions of ArUco markers in the global reference frame (LAB frame).
5: Pose estimates from odometry.
6: Detection parameters for ArUco markers (e.g., marker size, dictionary).
7: Outputs:
8: Estimated robot pose in the global frame: (Xrobot, Yrobot,Θrobot).
9: Detect ArUco Markers in the Image

10: Use OpenCV to detect the ArUco markers from the current camera image.
11: Input: Camera image I(t).
12: Output: List of detected marker IDs marker ids and their corner positions marker corners.
13: Estimate Marker Pose Relative to Camera
14: for each detected marker do
15: Use the camera pose estimation algorithm from OpenCV to estimate the pose of the marker relative

to the camera:

Tm =

[
Rm tm
0 1

]
16: Rm: Rotation matrix (from marker’s orientation to camera)
17: tm: Translation vector (position of marker relative to camera)
18: Use OpenCV’s cv::aruco::estimatePoseSingleMarkers() to get Rm and tm.
19: end for
20: Convert Marker Pose to Global Frame
21: for each detected marker do
22: Use the marker’s known position in the global frame and the estimated pose relative to the camera

to calculate the robot’s global position.
23: Retrieve the marker position in the global LAB frame: (Xm, Ym,Θm).
24: Retrieve the camera-relative pose from estimatePoseSingleMarkers(): (Xc, Yc,Θc).
25: Transform the marker’s pose to the global frame using the following equations:

Xrobot = Xm + cos(Θm) ·Xc − sin(Θm) · Yc

Yrobot = Ym + sin(Θm) ·Xc + cos(Θm) · Yc

Θrobot = Θm +Θc

26: Where:
27: Xrobot, Yrobot are the robot’s estimated position in the global frame.
28: Θrobot is the robot’s orientation (in degrees).
29: end for

Date: 15/03/2025
Version: No 1.0

Page 9

D4.2.4 Robot Localization

30: Normalize the Robot’s Orientation
31: Ensure the robot’s orientation Θrobot is in the range [−180◦, 180◦]:

Θrobot = mod(Θrobot + 180◦, 360◦)− 180◦

32: Update Pose at Reset Interval
33: Threshold check: Ensure the robot has moved sufficiently before updating its pose:

dmoved =
√

(Xfinal
robot −Xlast)2 + (Y final

robot − Ylast)2

∆Θ = |Θfinal
robot −Θlast|

34: if dmoved < movement threshold and ∆Θ < rotation threshold then
35: Skip the update.
36: end if
37: Publish the Updated Pose
38: if the pose has changed significantly then
39: Update the robot’s last pose:
40: Xlast = Xfinal

robot
41: Ylast = Y final

robot
42: Θlast = Θfinal

robot
43: Publish the updated robot pose
44: end if
45: Repeat

Date: 15/03/2025
Version: No 1.0

Page 10

D4.2.4 Robot Localization

5 Implementation
The robotLocalization ROS node is the core implementation of the module. It processes sensor
inputs and outputs the robot’s pose in real time. The configuration file specifies parameters such as the
platform, camera selection, and reset interval for absolute pose estimation. The implementation adheres to
coding standards outlined in Deliverable D3.2, ensuring maintainability and consistency.

5.1 File Organization
The source code for executing the robot localization is structured into three primary components: robotLo-
calizationImplementation, robotLocalizationApplication, and robotLocalizationInterface. The robotLocal-
izationImplementation component outlines all the essential functionality required for localizing the robot’s
pose, both for relative and absolute pose estimation. This component also parse various files necessary for
the robot localization functionality such as configuration files and topic files.

The robotLocalizationApplication component invokes those functions from the robotLocalizationIm-
plementation for the execution process of the localization node. The robotLocalizationInterface defines the
abstract layer with functions and variables declaration that facilitate communication between the applica-
tion and implementation layers, thereby ensuring modularity and consistency in the codebase.

The file structure of the robot localization node in the cssr system package is organized as below:

cssr system
robotLocalization

config
robotLocalizationConfiguration.ini

data
pepperTopics.dat

include
robotLocalization

robotLocalizationInterface.h
launch

robotLocalizationLaunchRobot.launch
src

robotLocalizationApplication.cpp
robotLocalizationImplementation.cpp

srv
SetPose.srv

README.md
CMakeLists.txt

5.2 Configuration File
The operation of the robotLocalization node is determined by the contents of the configuration file that
contains a list of key-value pairs as shown in Table 1 below.

The configuration file is named robotLocalizationConfiguration.ini

Date: 15/03/2025
Version: No 1.0

Page 11

https://cssr4africa.github.io/deliverables/CSSR4Africa_Deliverable_D3.2.pdf

D4.2.4 Robot Localization

Table 1: Configuration parameters for robot localization node
Key Values Effect
camera FrontCamera, RGBRealSense Specifies which RGB camera to use.
resetInterval <number> Specifies the distance that can be trav-

elled in centimetres before the relative
pose estimate is reset using the absolute
pose estimate.

robotTopics pepperTopics.dat Specifies the filename of the file in
which the physical Pepper robot sensor
and actuator topic names are stored.

verboseMode true, false Specifies whether diagnostic data is to
be printed to the terminal and diagnostic
images are to be displayed in OpenCV
windows.

Input File
The robot localization node does not read from an input data file.

Output File
The robot localization node does not write to an output data file. The output of the node is returned as
publishing the pose estimate to the /robotLocalization/pose topic, printing the pose estimate as
message on the screen, and landmarks boundary visualization displayed in OpenCV window, if in verbose
mode.

Topics File
A list of topics for the robot is stored in the topics file. The topics file are written in the .dat file format.
The data file is written as key-value pairs wherein the key specifies the actuators and the value specifies the
associated topics. The topics file for the robot is named robotTopics.dat

Launch File
The launch file robotLocalizationLaunchRobot.launch initializes the robot localization node,
the RealSense camera node, and Pepper robot’s sensors based on specified configurations. It declares
several parameters configured to match your network settings and the robot’s configuration, as specified in
deliverable D3.3 Software Installation Manual.

Topics Subscribed
This node subscribes to six topics: two RGB camera sensor topics (one published by the Pepper robot,
one by the RealSense camera), one depth camera topic (by the RealSense camera), an odometry topic, and
inertial measurement unit (IMU) topic, and a joint states topic for the head yaw angle. These are specified
in the files identified by the robotTopics key-value pair in the configuration file.

Date: 15/03/2025
Version: No 1.0

Page 12

https://cssr4africa.github.io/deliverables/CSSR4Africa_Deliverable_D3.3.pdf

D4.2.4 Robot Localization

Table 2: Topics the robot localization node subscribes
Topic Sensor Platform
/naoqi_driver/camera/front/image_raw FrontCamera Physical robot
/camera/color/image_raw RGBRealSense Intel RealSense
/camera/depth/image_rect_raw DepthRealSense Intel RealSense
/naoqi_driver/odom Odometry Physical robot
/naoqi_driver/imu/base IMU Physical robot
/joint_states Head Yaw Physical robot

Topics Published
The robotLocalization node publishes to topics as listed in Table 3 below.

Table 3: Topics published by the robot localization node.
Topic Node Platform

/robotLocalization/pose

gestureExecution
overtAttention
robotNavigation
behaviorController

Physical robot

Services Supported
This node provides and advertizes a server for a service /robotLocalization/reset pose to reset
the pose of the robot using absolute pose estimation. It uses a generic msg, Reset.msg with just one field
string, with a value “reset”. If the reset request is successful, the service response is “1”; if it is unsuccessful,
it is “0”.

Table 4: Services supported
Service Message Value Effect
/robotLocalization/reset_pose reset Reset robot pose.

Date: 15/03/2025
Version: No 1.0

Page 13

D4.2.4 Robot Localization

6 Running the Robot Localization Node
Running the robotLocalization node requires modules including a set of clearly defined ROS launch
files and configuration parameters. To initiate the robot localization module on the Pepper robot hardware,
you must ensure that all necessary sensor drivers and ROS components are correctly installed as outlined
in deliverable D3.3 Software Installation Manual.

NOTE

Ensure that the RealSense camera is properly connected to the Pepper robot and operational. To
visualize its feed, you can run:

rosrun image_view image_view image:=/camera/color/image_raw

To visualize the RealSense camera calibration using ROS (intrinsic parameters), run:

sudo apt-get install ros-<your_ros_distro>-camera-calibration

replace < your ros distro > with your ROS distribution, and:

rosrun camera_calibration cameracalibrator.py --size 8x6 --square 0.024
image:=/camera/color/image_raw camera:=/camera/color

Launching the localization node
Launching the node is achieved using the launch file robotLocalizationLaunchRobot.launch.
This launch file encapsulates all parameters, node configurations, and sensor initializations required for the
localization system’s full functionality. To execute the launch file, users should run the following command
in a terminal:

roslaunch robotLocalization robotLocalizationLaunchRobot.launch

The launch file initializes the localization node alongside ROS subscribers and publishers necessary for
sensor data acquisition and localization outputs.

Verifying successful startup and running
To verify successful startup and running of the node, users should monitor the terminal outputs, looking
specifically for initialization confirmation messages from the ROS topic /robotLocalization/pose
and visual data topic from the RealSense camera system node in an OpenCV window.

If the node runs successfully, the message "robot localization node running" is printed
to the terminal at every interval. When the absolute pose estimate is updated, the following message
"absolute pose updated successfully:<x position> <y position> <theta>" is
printed to the terminal.

To view the pose estimate of the robot in a continuous stream, visualize the topic by running:

rostopic echo /robotLocalization/pose

Date: 15/03/2025
Version: No 1.0

Page 14

https://cssr4africa.github.io/deliverables/CSSR4Africa_Deliverable_D3.3.pdf

D4.2.4 Robot Localization

7 Unit Testing
The unit testing is designed to validate all individual components and integrated subsystems of the robot
localization process, and adhering to the standards outlined in Deliverable D3.2 Software Engineering
Standards Manual and Deliverable D3.5 System Integration and Quality Assurance.

The file structure of the robot localization unit test is as follows.

unit test
robotLocalizationTest

config
robotLocalizationTestConfiguration.ini

data
testTopics.dat

include
robotLocalizationTest

robotLocalizationTestInterface.h
launch

robotLocalizationTest.launch
src

robotLocalizationTestApplication.cpp
robotLocalizationTestImplementation.cpp

srv
SetPose.srv

README.md
CMakeLists.txt

To verify the correct acquisition and preprocessing of sensor data inputs, isolated tests were conducted.
Individual ROS subscribers for odometry (/pepper robot/odom) and camera inputs (/camera/color
/image raw and /camera/depth/image rect raw) were tested.

Test scenarios included simulated sensor data streams with known properties to ensure each data chan-
nel’s correct parsing, synchronization, and preprocessing. These tests ensured that each subscriber reliably
acquired data at expected rates and correctly handled sensor-specific anomalies such as data dropouts or
inconsistent message formats.

Tests were also performed on the visual landmark detection subsystem. Introducing several ArUco
markers placed at known positions in the environment and the camera’s ability to detect any in its range of
view to compute the robot’s pose.

Table 5: Test cases
Test Case Description
odometry Verifies that the odometry data is published by the Pepper robot and the sub-

scriber node is able to subscribe to the topic.
cameraInputs Verifies that the RealSense camera system publishes the camera topics and the

camera feeds can be visualized in an OpenCV window.
detectArucoMarkers Verifies that the ArUco markers in the environment can be detected and the pose

can be estimated based on the ArUco markers in the camera’s field of view.
updateAbsolutePose Verifies that the robot’s pose is correctly updated at specified intervals on the

/robotLocalization/pose topic.

The results of the unit tests falls under success or failure conditions. If a test is successful, a success
message is logged, otherwise, a failure message is logged.

Date: 15/03/2025
Version: No 1.0

Page 15

D4.2.4 Robot Localization

References
[1] Gabriele Trovato, Massimiliano Zecca, Salvatore Sessa, Lorenzo Jamone, Jaap Ham, Kenji Hashimoto,

and Atsuo Takanishi. Cross-cultural study on human-robot greeting interaction: acceptance and dis-
comfort by egyptians and japanese. Paladyn, Journal of Behavioral Robotics, 4, 12 2013.

Date: 15/03/2025
Version: No 1.0

Page 16

D4.2.4 Robot Localization

Principal Contributors
The main authors of this deliverable are as follows:
Ibrahim Olaide Jimoh, Carnegie Mellon University Africa.
David Vernon, Carnegie Mellon University Africa.

Date: 15/03/2025
Version: No 1.0

Page 17

D4.2.4 Robot Localization

Document History
Version 1.0

First draft.
Ibrahim Olaide Jimoh
15 March 2025.

Date: 15/03/2025
Version: No 1.0

Page 18

	Introduction
	Requirements Definition
	Module Specification
	Module Design
	Relative Localization
	Absolute Localization

	Implementation
	File Organization
	Configuration File

	Running the Robot Localization Node
	Unit Testing
	References
	Principal Contributors
	Document History

