
Culturally Sensitive Social Robotics
for Africa

D4.2.3 Sound Detection and Localization

Due date: 31/12/2023
Submission Date: 21/02/2025

Revision Date: n/a

Start date of project: 01/07/2023 Duration: 36 months

Lead organisation for this deliverable: Carnegie Mellon University Africa

Responsible Person: Yohannes Haile Revision: 1.0

Project funded by the African Engineering and Technology Network (Afretec)
Inclusive Digital Transformation Research Grant Programme

Dissemination Level
PU Public PU
PP Restricted to other programme participants (including Afretec Administration)
RE Restricted to a group specified by the consortium (including Afretec Administration)
CO Confidential, only for members of the consortium (including Afretec Administration)

D4.2.3 Sound Detection and Localization

Executive Summary

Deliverable D4.2.3 introduces the soundDetection module, a key component designed to detect
and localize conspicuous sounds within a robot’s hearing range, enabling enhanced interaction and
responsiveness of Pepper robot. This module, implemented as a ROS node and it provides two outputs:
the direction of arrival (DoA) of the sound, published as an angle in degrees, and a filtered audio
signal. Designed to operate reliably in acoustically challenging environments, the module ensures
robust performance in real-world conditions. It is integral to the Speech Event (D4.3.2) and Attention
Subsytem(D5.3), facilitating Automatic Speech Recognition (ASR) and enabling the robot to focus
its attention on sound sources. The deliverable includes a comprehensive documentation package
covering the development process, functional specifications, interface design, and testing strategies.
A user manual provides clear instructions for building, launching, and configuring the module for use
with the Pepper robot. Testing across environments ensures reliability of the soundDetection module.

Date: 21/02/2025
Version: No 1.0

Page 2

D4.2.3 Sound Detection and Localization

Contents

1 Introduction 4

2 Requirement Definition 5

3 Module Specifications 6

4 Module Design 7

5 Implementation 12

6 Running the Sound Detection Node 15

7 Unit Test 16

References 18

Principal Contributors 19

Document History 20

Date: 21/02/2025
Version: No 1.0

Page 3

D4.2.3 Sound Detection and Localization

1 Introduction

The ability to detect and localize sound is fundamental for robots operating in dynamic and interactive
environments. Deliverable D4.2.3 addresses this need by developing the soundDetection module, a
ROS-based system that identifies conspicuous sounds and determines their direction of arrival (DoA)
using interaural time difference (ITD) as the primary localization technique. By leveraging ITD, the
module calculates the time delay of sound arrival between microphones, enabling precise auditory
localization within the robot’s hearing range. This module enhances the robot’s situational awareness
and facilitates more natural human-robot interactions using this auditory cues.

The soundDetection module is critical to enabling higher-level functionalities, such as Automatic
Speech Recognition (ASR) and OvertAttention, where auditory input is used to trigger speech pro-
cessing and direct the robot’s focus toward sound sources. It is designed to work reliably and handle
challenging acoustic conditions such as background noise and reverberation.

This deliverable includes the implementation of soundDetection ROS node, which processes
multichannel audio signals to output the sound’s direction and the captured audio signal. A con-
figuration file (soundDetectionconfiguration.json) enables flexibility in band-pass filter
thresholds, and intensity detection thresholds.

In addition to the software implementation, the deliverable provides a detailed report documenting
the module’s development process, functional specifications, and testing methodology. A user manual
is also included, offering clear guidance on building, configuring, and deploying the module.

Date: 21/02/2025
Version: No 1.0

Page 4

D4.2.3 Sound Detection and Localization

2 Requirement Definition

The soundDetectionmodule is designed to enable robots to detect conspicuous sounds and deter-
mine their direction of arrival (DoA) within the hearing range. The key requirements for the module
are as follows:

Sound Detection and Localization

• The module must detect conspicuous sounds, such as human voices, and ignore ambient noises
or background interference.

• Localization must be limited to the azimuth (horizontal) plane and output the DoA as an angle
in degrees relative to the robot’s Cartesian head frame.

Configurable Parameters

• Allow customization through Configuration parameters, such as band-pass filter thresholds, and
intensity detection thresholds, must be provided via a (soundDetectionConfiguration.json)
file.

Input and Output

• Input: Multichannel audio signal from the robot’s microphones.

• Output:

– Direction of Arrival: Published on the ROS topic soundDetection/direction.

– Audio Signal: Captured left channel audio, published on the ROS
topic soundDetection/signal.

Integration

• Outputs must be compatible with higher-level systems, such as the Speech Event and
OvertAttention packages, for Automatic Speech Recognition (ASR) and attention direc-
tion.

Verbose Mode

• Provide optional diagnostic output in the terminal

Misalignment of the Module

One of the key misalignments of the soundDetection module is its limited operational range in
the azimuth plane. The module can only accurately localize sounds within an angle range of −67◦ to
67◦. This limitation arises due to the smaller distance between the microphones on the robot’s head,
which affects the cross-correlation technique used for localization. Beyond this range, the cross-
correlation results in undefined, reducing the effectiveness of the module in detecting sounds coming
from wider angles.

Date: 21/02/2025
Version: No 1.0

Page 5

D4.2.3 Sound Detection and Localization

3 Module Specifications

The sound detection module, implemented as a ROS node named soundDetection, is designed to
detect sound within Pepper robot’s hearing and provide a filtered audio signal and determine the
direction of the sound arrival.

The input for this module is multi-channel audio from the robot’s microphone. For this node we
will be primairly be using the FrontLeft and FrontRight microphone to perform localization. For the
sound filtering part we will be using just the FrontLeft Microphone.

The output for this module is two topics. The array of audio data will be published on the
soundDetection/signal and the direction of conscipicious audio is published on
soundDetection/direction.

The module employs a band-pass filtering technique to isolate audio signals within the frequency
range typical of human voice. This filtering method effectively attenuates frequencies outside the de-
sired range, ensuring that extraneous sounds are minimized. Additionally, the module utilizes spectral
subtraction to remove stationary background noise by analyzing noise profiles during silent intervals.
The noise signature identified is then subtracted from the overall audio signal, resulting in a cleaner
output. Finally, the refined signal is published for further processing or use in downstream applica-
tions.

For the localization, the module utilizes interaural time difference (ITD) to localize sound sources.
It employs the Generalized Cross-Correlation with Phase Transform (GCC-PHAT) algorithm to esti-
mate the time delay between signals captured by multiple microphones. This method enhances the
accuracy of the delay estimation by emphasizing phase information, which is less susceptible to noise
interference. The computed time differences are then used to triangulate the position of the sound
source relative to the microphone array. Ultimately, this localization technique enables the pepper
robot to orient itself based on the direction of arrival of the sound.

If verbosemode is set to True in the configuration file, diagnostic messages and the calculated
angle of arrival for the conspicuous sound will be printed out.

A unit test is developed to test the sound detection node under various conditions background noise
and background chatter. The tests will be conducted using a driver-stub test platform, which utilizes
recorded audio signal from pepper robot stored in the data folder. Additionally, the unit tests can be
executed directly on the physical robot to validate real-world performance.

Date: 21/02/2025
Version: No 1.0

Page 6

D4.2.3 Sound Detection and Localization

4 Module Design

Audio Input

The input for soundDetection ROS node are pepper’s microphone located on the top of pepper robot
head. Pepper robot has four micophone located on the top of head for this module though we will
be using only the two microphone the FrontLeft (C) and FrontRight (D)) microphone as on diagram
below. The node expects audio to be sampled at 48 kHz and delivered in blocks of 4096 samples.
For better sound localization a block of 8192 samples are used for better precision for the sound
localization. The pepper robot has four microphones located at the top of the robot’s head as shown
in Figure 1.

Figure 1: Pepper Microphone. Source: Aldebaran

Table 1: Pepper Microphone Part and Name.

Part Name
A MicroRL sensor
B MicroRR sensor
C MicroFL sensor
D MicroFR sensor

Algorithms

WebRTC VAD (Voice Activity Detection)

The WebRTC Voice Activity Detector (VAD) analyzes short frames of audio, typically 10, 20, or 30
milliseconds, to determine if speech is present. It computes various features such as energy levels,
zero-crossing rates, and spectral characteristics for each frame. Based on these features, the VAD
compares the computed values against predefined thresholds to decide whether the frame contains
speech. It offers multiple aggressiveness modes, ranging from 0 to 3, allowing it to be tuned for dif-
ferent noise environments. In quieter settings, lower aggressiveness modes permit more background
noise to be classified as speech, while higher modes are more selective in noisy conditions. The al-
gorithm uses a combination of time-domain and frequency-domain analysis to improve its robustness
and accuracy across diverse acoustic scenarios. Ultimately, the VAD outputs a binary decision for each
frame, ensuring that sound filtering and localization are only triggered when speech is detected.[1]

Date: 21/02/2025
Version: No 1.0

Page 7

http://doc.aldebaran.com/2-5/family/pepper_technical/microphone_pep.html

D4.2.3 Sound Detection and Localization

GCC-PHAT

The GCC-PHAT algorithm is a used method for estimating the time delay between two signals, which
is crucial for sound localization. It begins by converting both signals into the frequency domain us-
ing the Fourier Transform, allowing for efficient cross-correlation. Then it computes the cross-power
spectrum of the two signals and applies a phase transform by normalizing the spectrum with its magni-
tude, thereby emphasizing phase differences while minimizing amplitude variations. Next an inverse
Fourier Transform is applied to the normalized spectrum to obtain a cross-correlation function in the
time domain. The algorithm estimates the time delay by locating the peak in this cross-correlation
function, which corresponds to the interaural time difference. This delay is then converted into an
angle of arrival using the known geometry of the pepper’s robot microphone setup(i.e the distance
between the two microphone is considered to be (0.07m) and the speed of sound (343m/s) . By
focusing on phase information rather than raw amplitude, GCC-PHAT remains robust in noisy or
reverberant environments, ensuring accurate estimation of the sound’s direction.[2]

Algorithm 1 GCC-PHAT Algorithm for Sound Localization
Require: Left-channel signal x(t), right-channel signal y(t), sampling frequency fs, small constant
ϵ (to avoid division by zero), and optionally a maximum delay Tmax

Ensure: Estimated time delay τ̂ between x(t) and y(t)

1: Compute the Fourier transform of x(t): X(f)← FFT(x(t))
2: Compute the Fourier transform of y(t): Y (f)← FFT(y(t))
3: Compute the cross-power spectrum: R(f)← X(f) · Y ∗(f) ▷ Y ∗(f) is the complex conjugate

of Y (f)
4: Normalize the cross-power spectrum using PHAT:

RPHAT(f)←
R(f)

|R(f)|+ ϵ

5: Compute the inverse Fourier transform to obtain the cross-correlation function:

r(τ)← IFFT(RPHAT(f))

6: Optionally, restrict the search for τ to the interval [−Tmax, Tmax]
7: Find the time delay τ̂ that maximizes |r(τ)|:

τ̂ ← argmax
τ
|r(τ)|

8: return τ̂

The difference between classical cross correlation and GCC-PHAT is the classical cross correla-
tion computes the similarity between two signals based solely on their amplitudes, which makes it
sensitive to variations in signal energy and noise. In contrast, GCC-PHAT introduces a normalization
step where the cross-power spectrum is divided by its magnitude, effectively stripping away amplitude
information and emphasizing phase differences. This phase emphasis allows GCC-PHAT to be more
robust in noisy or reverberant environments, yielding more accurate time delay estimates. By mitigat-
ing the influence of amplitude variations, GCC-PHAT can reliably identify the peak corresponding to
the true time delay, even when the signals are distorted by noise.

Date: 21/02/2025
Version: No 1.0

Page 8

D4.2.3 Sound Detection and Localization

Low and High Band pass filter

Audio filtering in the soundDetection node is implemented using a cascade of high-pass and low-pass
Butterworth filters to isolate the frequency range typical of human speech. We use a high-pass filter
with a cutoff frequency of around 80 Hz to eliminate low-frequency noise such as mechanical rumble
or environmental hum. In parallel, a low-pass filter with a cutoff frequency of approximately 3400
Hz is applied to suppress high-frequency interference and background noise. Both filters are designed
using a Butterworth configuration with an order of 5, which provides a smooth frequency response
while ensuring a relatively steep roll-off at the cutoff frequencies. The design of these filters is based
on the system’s sampling rate of 48000 Hz and the cutoff frequencies are normalized accordingly.
This filtering ensures that only the frequency components associated with human voice are preserved.
These parameters can be adjusted in the configuration file to fine-tune the system for different acoustic
environments, making the filtering process both robust and adaptable.

Parameter Value Unit
Sampling Rate 48000 Hz

High-Pass Cutoff 80 Hz
Low-Pass Cutoff 3400 Hz

Filter Order 5 -

Table 2: Summary of Audio Filtering Parameters

Spectral subtraction

Spectral subtraction is a noise reduction technique that works in the frequency domain by estimating
and removing the noise component from a noisy signal. The process begins by transforming the noisy
signal into the frequency domain using the Short-Time Fourier Transform (STFT), which breaks the
signal into overlapping frames. For each frame, the magnitude spectrum is computed, and an estimate
of the noise spectrum is obtained—typically from a segment of the audio where only noise is assumed
to be present (often the initial few frames). The noise spectrum is then subtracted from the magnitude
spectrum of the noisy frame, with negative values clipped to zero to avoid non-physical results. This
yields a “cleaned” magnitude spectrum that ideally retains only the speech components. Finally, the
cleaned magnitude spectrum is combined with the original phase information and transformed back
into the time domain using the inverse STFT, resulting in a denoised audio signal.[3]

Parameter Value Unit Comment

FFT Size 1024 points
Number of FFT points for

spectral analysis

Hop Length 512 points
Overlap between successive

frames

Noise Frames 5 frames
Number of initial frames used to

estimate the noise spectrum

Table 3: Summary of Spectral Subtraction Parameters

Date: 21/02/2025
Version: No 1.0

Page 9

D4.2.3 Sound Detection and Localization

Algorithm 2 Spectral Subtraction Algorithm
Require: Noisy signal x(t), sampling frequency fs, FFT size N , hop length L, number of noise
frames M , and small constant ϵ
Ensure: Denoised signal y(t)

1: Compute the STFT of x(t): Z(f, t)← STFT(x(t), N, L)
2: Separate the magnitude and phase:

A(f, t)← |Z(f, t)|, ϕ(f, t)← ̸ Z(f, t)

3: Estimate the noise spectrum from the first M frames:

N(f)← 1

M

M∑
t=1

A(f, t)

4: for each frame t do
5: Subtract the noise estimate from the magnitude:

Aclean(f, t)← max
(
A(f, t)−N(f), 0

)
6: Reconstruct the cleaned complex spectrum:

Zclean(f, t)← Aclean(f, t) · ejϕ(f,t)

7: end for
8: Compute the inverse STFT:

y(t)← ISTFT(Zclean(f, t), N, L)

9: return y(t)

The diagram below shows how the audio flow chart starting from pepper’s microphone until to get
filtered audio signal and direction of arrival of the sound.

Sound Source

Pepper Robot

Intensity
Threshold

Filter

High & Low
Pass Filter

Spectral
Substraction

Voice Activity
Detection

GCC-PHAT
Angle

Computation

Bu�er
Accumulation

Right Signal

Left Signal

Filtered Audio Signal

/SoundDetection/Signal

Sound Direction

/SoundDetection/Direction

Left Signal

Figure 2: Sound Detection and Localization Flow Chart

Date: 21/02/2025
Version: No 1.0

Page 10

D4.2.3 Sound Detection and Localization

Due to the finite resolution of the audio processing system, the estimated direction of arrival is
inherently quantized into a discrete set of values. The theoretical position of the maximum cross-
correlation value can be calculated by

n =
l sin θ

c
× Fs,

with our parameters l = 0.07m, c = 343m/s, and Fs = 48000Hz, we first calculate the constant
factor:

K =
0.07

343
× 48000 ≈ 9.795.

Thus, the delay index becomes
n = 9.795× sin θ.

For unique discrimination, assume that the maximum distinct index is n = 9 (since index values are
quantized). Setting

9.795× sin θ = 9,

we solve for θ:
sin θ =

9

9.795
≈ 0.9183.

Taking the inverse sine, we obtain:

θ ≈ arcsin(0.9183) ≈ 67◦.

Thus, the system can uniquely resolve angles only up to approximately 67◦ (and−67◦ on the negative
side) due to the discrete nature of the cross-correlation process. Any angle beyond about 67◦ will
produce the same index, limiting the system’s angular resolution unless the sampling frequency or the
interaural distance is increased.

Date: 21/02/2025
Version: No 1.0

Page 11

D4.2.3 Sound Detection and Localization

5 Implementation

File Organization

The source code for conducting sound detection and localization is structured into two primary compo-
nents: sound detection application and sound detection implementation. The
sound detection implementation component encapsulates all the essential functionality re-
quired for sound filtering as well as sound localization. Additionally, the sound detection system is
equipped with the capability to process various files critical for testing, such as configuration files,
input files, and topic files. Meanwhile, the sound detection application component serves
as the entry point, invoking the main functions to run the sound detection node and executing the
functions defined within sound detection implementation.

Here is the file structure of the sound detection package:

cssr system
sound detection

config
sound detection configuration.json

data
pepper topics.dat

msg
msg file.msg

src
sound detection application.py
sound detection implementation.py

CSSR4AfricaLogo.svg
sound detection requirements.txt
README.md
CMakeLists.txt
Package.xml

Figure 3: File structure of the sound detection system

UML Diagram for the Sound Detection and Localization Module

The UML diagram provides a clear structural representation of the sound Detection and Localization
Module, illustrating the various field and method present in the soundDetectionNode class.

Date: 21/02/2025
Version: No 1.0

Page 12

D4.2.3 Sound Detection and Localization

Below is the UML diagram of sound detection implementation.py

<< File: sound_detection_tracking.py >>
SoundDetectionNode

+ frequency_sample: int
+ speed_of_sound: float
+ distance_between_ears: float
+ localization_buffer_size: int
+ frontleft_buffer: np.array
+ frontright_buffer: np.array
+ accumulated_samples: int
+ intensity_threshold: float
+ vad: webrtcvad.Vad
+ vad_frame_duration: float
+ vad_frame_size: int
+ lock: threading.Lock
+ audio_sub: rospy.Subscriber
+ signal_pub: rospy.Publisher
+ direction_pub: rospy.Publisher

+ __init__()
+ read_json_file()
+ extract_topics(topic_key)
+ butter_highpass(lowcut, fs, order)
+ butter_lowpass(highcut, fs, order)
+ apply_filter(data, b, a)
+ spectral_subtraction(noisy_signal, fs)
+ audio_callback(msg)
+ process_audio_data(msg)
+ is_intense_enough(signal)
+ update_buffers(sigIn_frontLeft, sigIn_frontRight)
+ voice_detected(audio_frame)
+ localize(sigIn_frontLeft, sigIn_frontRight)
+ gcc_phat(sig, ref_sig, fs, max_tau, interp)
+ calculate_angle(itd)
+ publish_angle(angle)
+ spin()

Figure 4: Sound detection implementation UML

Configuration File

The operation of the sound detection node is determined by the contents of the configuration file
that contains a list of key-value pairs as shown on the table below. The configuration file is named
sound detection configuration.json.

Key Value Description
high pass filter <number> Specifies the cutoff frequency (in Hz) for the high-pass

Butterworth filter used to remove low-frequency noise.
low pass filter <number> Specifies the cutoff frequency (in Hz) for the low-pass But-

terworth filter used to suppress high-frequency noise.
intensity threshold <number> Specifies the minimum audio intensity threshold for voice

activity detection to trigger further processing.
verbose mode true or false Specifies whether diagnostic information is printed to the

terminal.

Table 4: Configuration file key-value pairs for the sound detection node.

Input File

There is no input file the sound detection node.

Date: 21/02/2025
Version: No 1.0

Page 13

D4.2.3 Sound Detection and Localization

Output File

There is no output file the sound detection node. The node display on the terminal direction of the
conspicuous sound.

Models

No models are used for this sound detection node.

Topics File

For the test, a selected list of the topics for the robot is stored in the topics file. The topic files
are written in the .dat file format. The data file is written in key-value pairs where the key is the
Microphone and the value is the topic. The topics file for the robot is named pepper topics.dat.

Launch File

The launch file sound detection launch robot.launch is designed to initialize pepper sen-
sors based on the specified configuration. It declares several parameters that can be customized to
match your network settings.

• pepper robot ip: specifies the IP address of the Pepper robot (default: 172.29.111.230).

• pepper robot port: specifies the communication port for Pepper (default: 9559).

• network interface: specifies the network interface name (default: wlp0s20f3).

• namespace: sets the ROS namespace for the naoqi driver (default: naoqi driver).

Topics Subscribed

The sound detection node subscribes to the following topics:

Sensor Topic Name Message Type
Microphone /naoqi driver/audio naoqi driver/AudioCustomMsg

Table 5: Topics subscribed by the sound detection node.

Topics Published

The sound detection node publishes the following topics:

Topic Name Message Type Description
/soundDetection/signal std msgs/Float32MultiArray Contains the filtered audio signal

(4096 samples) corresponding to the

input audio block.

/soundDetection/direction std msgs/Float32 Contains the computed angle of

arrival (in degrees) of the sound.

Table 6: Topics published by the sound detection node.

Date: 21/02/2025
Version: No 1.0

Page 14

D4.2.3 Sound Detection and Localization

6 Running the Sound Detection Node

To run the sound detection node, the user must first install the necessary software packages as outlined
in Deliverable 3.3. The required packages are listed in the sound detection requirements.txt
file. The user can follow the README file in the sound detection package to install the required
packages. Referring to the implementation section of this deliverable report, the user must set the
configuration file to the desired parameters. Using the key-value pair, the user can set the itensity
threshold, High and Low pass frequency filter, and other parameters. The user can then run the sound
detection node by executing the following command in the terminal:

Launch Pepper robot sensors
$ roslaunch sound_detection sound_detection.launch

Run the sound detection node
$ rosrun sound_detection sound_detection_application.py

Date: 21/02/2025
Version: No 1.0

Page 15

https://cssr4africa.github.io/deliverables/CSSR4Africa_Deliverable_D3.3.pdf

D4.2.3 Sound Detection and Localization

7 Unit Test

The unit test is designed to validate the sound detection node’s functionality under various environ-
ment including nose such as background chatter and air conditioning noise The test can be performed
using a driver-stub test platform, which utilizes recorded audio data stored in the data folder as a
rosbag file. The unit test can also be executed directly on the physical robot to validate real-world
performance.

The sound detection unit test file structure is as follows:

unit test
sound detection test

config
sound detection test configuration.json

data
sound detection input soundDistance.bag
sound detection input soundAngle.bag
sound detection input soundNoise.bag
sound detection output.mp3

launch
sound detection launch robot.launch
sound detection launch testHarness.launch

src
sound detection test application.py
sound detection test implementation.py

CMakeLists.txt
Package.xml
README.md

Figure 5: File structure of the sound detection unit test.

The filtered audio signal is saved as sound detection output.mp3 The test cases for the
sound detection node that are going to be evaluated are as follows:

Test Case Description
soundDistance Verifies the sound detection node’s capability to accurately measure the distance of

a sound source. This bag file contains audio recordings with variations in source-to-
microphone distance, allowing evaluation of distance estimation performance.

soundAngle Evaluates the system’s ability to compute the angle of arrival of the sound. The bag
file includes audio samples recorded from different azimuth angles to validate the
accuracy of the GCC-PHAT based localization.

soundNoise Assesses the robustness of the sound detection node under noisy conditions. This bag
file features audio with various levels of background noise, testing the effectiveness
of filtering and voice activity detection (VAD) algorithms.

Table 7: Test cases for sound detection node evaluation using specific bag files.

Date: 21/02/2025
Version: No 1.0

Page 16

D4.2.3 Sound Detection and Localization

Configuration File

The configuration file for the sound detection unit test is named
sound detection test configuration.json and contains the following key-value pairs:

Key Value Description
bag file <test name> Specifies the ROS bag file used as input for

testing.

save audio true or false Specifies whether to save the output audio
of the test.

speaker true or false Enables the speaker to announce which test
is currently running.

verbose mode true or false Specifies whether detailed logs and diagnos-
tic messages be displayed during execution.

Table 8: Configuration file key-value pairs for the sound detection test.

Note: Valid values for bag file include: soundDistance, soundAngle, soundNoise.

Date: 21/02/2025
Version: No 1.0

Page 17

D4.2.3 Sound Detection and Localization

References

[1] WebRTC and Wiseman. Webrtc voice activity detector. https://github.com/wiseman/
py-webrtcvad. Accessed: 2025-02-27.

[2] C. H. Knapp and G. C. Carter. The generalized correlation method for estimation of time delay.
IEEE Transactions on Acoustics, Speech, and Signal Processing, 24(4):320–327, 1976.

[3] Stephan Boll. Suppression of acoustic noise in speech using spectral subtraction. IEEE Transac-
tions on Acoustics, Speech, and Signal Processing, 27(2):113–120, 1979.

Date: 21/02/2025
Version: No 1.0

Page 18

https://github.com/wiseman/py-webrtcvad
https://github.com/wiseman/py-webrtcvad

D4.2.3 Sound Detection and Localization

Principal Contributors

The main authors of this deliverable are as follows (in alphabetical order).

Yohannes Haile, Carnegie Mellon University Africa.
David Vernon, Carnegie Mellon University Africa.

Date: 21/02/2025
Version: No 1.0

Page 19

D4.2.3 Sound Detection and Localization

Document History

Version 1.0
First draft.
Yohannes Haile.
26 February 2025

Date: 21/02/2025
Version: No 1.0

Page 20

	Introduction
	Requirement Definition
	Module Specifications
	Module Design
	Implementation
	Running the Sound Detection Node
	Unit Test
	References
	Principal Contributors
	Document History

