
Culturally Sensitive Social Robotics
for Africa

D4.2.2 Face and Mutual Gaze Detection and Localization

Due date: 31/12/2023
Submission Date: 21/02/2025

Revision Date: N/A

Start date of project: 01/07/2023 Duration: 36 months

Lead organisation for this deliverable: Carnegie Mellon University Africa

Responsible Person: Yohannes Haile Revision: 1.0

Project funded by the African Engineering and Technology Network (Afretec)
Inclusive Digital Transformation Research Grant Programme

Dissemination Level
PU Public PU
PP Restricted to other programme participants (including Afretec Administration)
RE Restricted to a group specified by the consortium (including Afretec Administration)
CO Confidential, only for members of the consortium (including Afretec Administration)

D4.2.2 Face and Mutual Gaze Detection and
Localization

Executive Summary

Deliverable D4.2.2 focuses on the development of a ROS node that detects and localizes human faces
under various conditions and determines whether mutual gaze is established between the Pepper robot
and the human user through head pose estimation. This deliverable includes the implementation of a
ROS node called faceDetection, accompanied by a comprehensive report documenting the de-
velopment process, refinement of requirements, and a detailed specification of the node’s functional
characteristics. Additionally, it provides a user manual with clear instructions on building and launch-
ing the ROS node. The design of the interface covers input, output, and control data, with suitable
data structures and code that adhere to the software engineering standards established by the project.
The functionality of the faceDetection node is thoroughly tested and validated using various test
cases, including scenarios with different lighting conditions, occlusions, and varying distances be-
tween the robot and the user. The node is also tested on the Pepper robot to confirm its reliability and
real-time performance, ensuring it meets the intended objectives effectively.

Date: 21/02/2025
Version: No 1.0

Page 2

D4.2.2 Face and Mutual Gaze Detection and
Localization

Contents

1 Introduction 4

2 Requirements Definition 5

3 Module Specifications 7

4 Module Design 8

5 Implementation 12

6 Running the Face Detection Node 18

7 Unit Test 19

References 21

Principal Contributors 22

Document History 23

Date: 21/02/2025
Version: No 1.0

Page 3

D4.2.2 Face and Mutual Gaze Detection and
Localization

1 Introduction

This document outlines the development and implementation of a ROS node for face detection, lo-
calization, and mutual gaze detection using head pose estimation for the Pepper robot. The primary
goal of this node is to enhance the interaction capabilities of the Pepper robot, allowing it to iden-
tify and track human faces within its environment, which serves as a cornerstone for creating natural
and intuitive interactions. The mutual gaze detection functionality further strengthens this interaction
by leveraging head pose estimation to identify moments when users establish eye contact with the
robot—an essential component of engaging and socially aware behavior.

The deliverable includes a detailed report documenting the complete software development life cy-
cle for the face detection and localization module. The requirements definition process is thoroughly
covered, ensuring that all functional necessities are carefully aligned with the project’s objectives.
This section also highlights any identified misalignment or challenges that may arise during the de-
velopment process and how they are addressed. The module design section provides an in-depth
description of the face detection and mutual gaze localization functionality, covering critical aspects
such as input, output, and control data.

The operation of the module is guided by parameters defined in a configuration file, which is
structured as a list of key-value pairs in the faceDetectionConfiguration.json file. This
configuration allows for flexible and scalable customization of the module’s behavior to suit various
operating conditions and requirements. Furthermore, the document emphasizes the importance of
robust design principles to ensure the module’s reliability and performance in real-time applications.

Date: 21/02/2025
Version: No 1.0

Page 4

D4.2.2 Face and Mutual Gaze Detection and
Localization

2 Requirements Definition

The face and mutual gaze detection and localization module is designed to meet the following require-
ments, ensuring seamless integration with the Pepper robot and its ROS-based ecosystem. The key
requirements for the module are as follows:

Face Detection

• Detect human faces in the robot’s field of view using an RGB image as input.

• Detect and localize all faces in the field of view when multiple people are present.

• Localize faces by determining their position in the image and drawing bounding boxes.

• Identify the centroid coordinates of each bounding box.

• Determine the depth of all the faces detected.

Face Labeling and Consistency

• Assign unique labels to detected faces (e.g., “Face 1”).

• Maintain consistent labeling of the same face across consecutive image frames, provided the
spatial displacement is within a defined tolerance.

• Reassign new labels to reappearing faces if not detected for a configurable number of images.

Gaze Direction Estimation

• Analyze head pose to estimate gaze direction, enabling the detection of mutual gaze between
the robot and the user.

Configurable Parameters

• Allow customization through a configuration file (faceDetectionConfiguration.json)

Input/Output Specifications

• Input: RGB-D image from a robot camera or external camera.

• Output: Annotated images with bounding boxes and labeled face records published to the
/faceDetection/data topic.

Verbose Mode

• Provide optional diagnostic output and visual debugging through an OpenCV window.

Date: 21/02/2025
Version: No 1.0

Page 5

D4.2.2 Face and Mutual Gaze Detection and
Localization

Misalignment of the module

Due to the poor camera present on the robot camera it necessitated the use of external camera. Hence,
the depth information provided by the Pepper’s camera is low quality hence the depth information
(distance of the faces from the camera) isn’t accurate. In addition, this module doesn’t support the
simulator.

Date: 21/02/2025
Version: No 1.0

Page 6

D4.2.2 Face and Mutual Gaze Detection and
Localization

3 Module Specifications

The face detection module, implemented as a ROS node named faceDetection, is designed to detect
faces within Pepper robot’s field of view and determine their location and gaze direction in the image
frame of reference. The module provides labeled, color-coded bounding boxes around each detected
face and tracks these label across successive images for coherent detection. The module doesn’t not
perform face recognition but ensure consistency in labeling based on spatial proximity and config-
urable tolerance settings.

The inputs for this module is an RGB image from the robot’s camera or external camera (Intel
RealSense D435i), the depth iamge from the robot’s depth sensors or an external RGB-D camera
(Intel Realsense D435i).

The outputs for this module is annotated RGB image with bounding boxes around detected faces
and an array of record is published with the following message faceDetection/data topic:

• Face label representing as number

• 3D image coordinates of the bounding box centroid

• True/False value determining whether a mutual gaze is established.

The module will utilize two methods for face detection: MediaPipe and a YOLO (You Only
Look Once) [1] based face detection model. Each method is optimized for different scenarios, giving
the flexibility to the user to select between these two algorithms based on their specific requirements.

MediaPipe is ideal for face detection within shorter distances and when processing is limited
to CPU-based computing. It efficiently detects facial landmarks, including key points such as the
distance between the eyes, nose, and mouth, which are essential for inferring the 3D orientation of the
head pose. However, its performance and detection range are limited when faces are located farther
from the camera.

On the other hand, the YOLO-based model is a deep learning approach designed to detect
human heads at greater distances, leveraging GPU acceleration for robust and accurate face detec-
tion, even in challenging environments. Once a face is detected, the model applies SixDRep (6D
Rotation Representation for Unconstrained Head Pose Estimation)[2] to de-
termine the head’s orientation. This method offers a representation of the head’s rotation across six
degrees of freedom, allowing the system to accurately assess mutual gaze.

By providing the option to choose between MediaPipe and YOLO, the module ensures flexibil-
ity across various settings. MediaPipe can be selected for lightweight, close-range scenarios, while
YOLO can be chosen for long-range detection and environments where GPU resources are available.

If verbosemode is set to True in the configuration file, an OpenCV window will display the detected
face’s bounding box and indicate whether mutual gaze is established. Each detected face will also be
assigned a unique label. This provides real-time visualization and tracking for face detection and gaze
estimation.

A unit test is developed to cover various scenarios, including multiple faces, partial occlusion,
variable lighting conditions, and label reassignment when faces disappear. The tests will be conducted
using a driver-stub test platform, which utilizes recorded color and depth images stored in the data
folder. Additionally, the unit tests can be executed directly on the physical robot to validate real-world
performance.

Date: 21/02/2025
Version: No 1.0

Page 7

D4.2.2 Face and Mutual Gaze Detection and
Localization

4 Module Design

Image Input

The primary input for the ROS node will be the Intel RealSense camera mounted on top of Pepper’s
head. As an alternative, the Pepper camera can also be used by configuring the camera parameter in
the configuration file. However, as noted in section 2 the depth camera has very low quality. The
Intel RealSense camera provides both RGB and depth images at various resolutions and frame rates,
which can be customized through the launch file parameters. The table below outlines the available
resolution and frame rate configurations for the Intel RealSense camera.

Format Resolution Frame Rate (FPS) Comment

Z [16 bits]

1280x720 6, 15, 30

Depth

848x480 6, 15, 30, 60, 90
640x480 6, 15, 30, 60, 90
640x360 6, 15, 30, 60, 90
480x270 6, 15, 30, 60, 90
424x240 6, 15, 30, 60, 90

YUY2 [16 bits]

1920x1080 6, 15, 30

Color Stream from RGB camera
(Camera D415 & D435/D435i)

1280x720 6, 15, 30
960x540 6, 15, 30, 60
848x480 6, 15, 30, 60
640x480 6, 15, 30, 60
640x360 6, 15, 30, 60
424x240 6, 15, 30, 60
320x240 6, 30, 60
320x180 6, 30, 60

Table 1: Stream Configurations for Depth and Color for Intel RealSense D435i. See the official
datasheet: Intel RealSense D400 Series Datasheet.

Algorithms

MediaPipe

MediaPipe is open-source framework developed by Google that provides efficient solution for real-
time computer vision application. Among the various capablitlies, Media pipe can be utilized for head
pose estimation by leveraging its face detection and face landmark modules. The process involves
detecting key facial landmarks, such as the eyes, nose and mouth, to determine the orientation of
the head in 3D space. MediaPipe’s Face Mesh module identifies 468 distinct facial landmarks with
high precision, allowing for robust tracking of head movements. Once these landmarks are detected,
they are used as input to compute the head’s rotation and translation relative to the camera coordinate
system. You can see the landmarks detected on the picture below.

Date: 21/02/2025
Version: No 1.0

Page 8

https://cdrdv2-public.intel.com/841984/Intel-RealSense-D400-Series-Datasheet.pdf

D4.2.2 Face and Mutual Gaze Detection and
Localization

Figure 1: Media Pipe Face land marks [3]

By fitting a 3D face model to the detected 2D landmarks using Perspective-n-Point(PnP), it calcu-
lates Euler angles (yaw, pitch, and roll) to represent the head’s orientation.

SixDRepNet

SixDRepNet is a deep learning-based model designed specifically for head pose estimation. Unlike
traditional methods like MediaPipe, which rely on 2D-to-3D correspondences and facial landmarks,
SixDRepNet takes a direct regression approach. It predicts the yaw, pitch, and roll angles directly
from input images, without requiring explicit 3D landmark annotations or predefined face models.
The process begins with YOLO, which detects the face in the input image and generates a bounding
box. The detected face region is then cropped and resized to the required input dimensions of 224 ×
224 pixels for the head pose estimation model. The preprocessed face image is fed into SixDRepNet,
which outputs a 6D rotation representation. This representation is converted to a rotation matrix and
used to compute the head’s yaw, pitch, and roll angles.

Centroid Tracker

For tracking faces across frames, the centroid tracker is used together with MediaPipe. The tracker
ensures the detected faces remains consistently tracked even as they move or momentrily disappear.
Mediapipe detects facial landmarks and provides the bounding boxes around faace in each frame,
while the centroid Tracker assigns and maintains unique IDs for each detected face. It calculates the
centroid of the bounding boxes and tracks it across consecutive frames by measuring the Euclidean
distance to match centroids. If a match is found, the corresponding face ID is updated; otherwise, a
new ID is assigned. The tracker handles cases where faces temporarily disappear by keeping track of
missed detection and deregistering them only after a set threshold of consecutive frames.

Date: 21/02/2025
Version: No 1.0

Page 9

D4.2.2 Face and Mutual Gaze Detection and
Localization

Algorithm 1 Centroid Tracker Algorithm
Require: Detected centroids Ct at time t, tracked objects Ot−1 from time t− 1
Ensure: Updated object IDs and centroids Ot

1: if Ot−1 is empty then
2: for all centroid c ∈ Ct do
3: Register c as a new object with unique ID
4: end for
5: else
6: Compute distance matrix D between Ct and Ot−1

7: Match centroids using nearest-neighbor approach
8: for all matched pair (o, c) do
9: Update object o with new centroid c

10: Reset disappearance counter for o
11: end for
12: for all unmatched objects in Ot−1 do
13: Increment disappearance counter
14: if counter exceeds threshold then
15: Deregister the object
16: end if
17: end for
18: for all unmatched centroids in Ct do
19: Register centroid c as a new object with unique ID
20: end for
21: end if
22: return updated objects Ot

SORT (Simple Online and Realtime Tracker)

The SORT algorithm is a lightweight multi-object tracking method that combines Kalman filtering
for motion prediction and the Hungarian algorithm for data association. The process begins with
detecting a face using an Intel RealSense camera mounted on Pepper’s head. YOLO is employed for
head detection, after which the Kalman filter predicts the motion of detected objects in subsequent
frames. To associate new detections with existing tracks, SORT utilizes the Hungarian algorithm with
Intersection over Union (IoU) as the matching criterion. Once matches are found, the Kalman filter
updates its state with the latest information. Tracks that do not find a match are marked as lost and
eventually deleted, while new detections initiate new tracks.[4]

Date: 21/02/2025
Version: No 1.0

Page 10

D4.2.2 Face and Mutual Gaze Detection and
Localization

Algorithm 2 SORT Algorithm
Require: Detected bounding boxes Bt at time t, tracked objects Ot−1 from time t− 1
Ensure: Updated object IDs and bounding boxes Ot

1: if Ot−1 is empty then
2: for all bounding box b ∈ Bt do
3: Register b as a new object with a unique ID
4: end for
5: else
6: Predict new positions of tracked objects using the Kalman filter
7: Compute the cost matrix D using Intersection over Union (IoU) between Bt and predicted

objects
8: Solve the assignment problem using the Hungarian algorithm
9: for all matched pairs (o, b) do

10: Update object o with new bounding box b
11: Reset disappearance counter for o
12: end for
13: for all unmatched objects in Ot−1 do
14: Increment disappearance counter
15: if counter exceeds threshold then
16: Deregister the object
17: end if
18: end for
19: for all unmatched bounding boxes in Bt do
20: Register bounding box b as a new object with a unique ID
21: end for
22: end if
23: return updated objects Ot

Below is a diagram illustrating the complete process of SORT tracking.

Sort Algorthim
KF Estimation Track Management

Previous
State

Kalman �lter
UpdateState

Prediction

Cost
Matrix

Matching

Matched

Measurement

Unmatched

Measurement

Unmatched
Tracks

Data Association

Array of
Tracks

Output
Conditions

Track
Initialization

Delete
Conditions

Track
Delete

Kalman �lter
Prediction

YOLO
Face

Detection

Output

Face
Bounding

Boxes,
Mutual Gaze

&
Track IDs

SixDRep

Figure 2: SORT Diagrams

Date: 21/02/2025
Version: No 1.0

Page 11

D4.2.2 Face and Mutual Gaze Detection and
Localization

5 Implementation

File Organization and Purpose

The source code for conducting face detection, mutual gaze detection, and localization is structured
into three primary components: face detection application, face detection implementation,
and face detection tracking. The face detection implementation component en-
capsulates all the essential functionality required for executing both face detection and mutual gaze
detection, utilizing MediaPipe and SixDRepNet. The face detection tracking compo-
nent, on the other hand, manages tracking functionality by employing either the Centroid Tracker or
SORT (Simple Online and Realtime Tracking). Additionally, the face detection system is equipped
with the capability to process various files critical for testing, such as configuration files, input files,
and topic files. Meanwhile, the face detection application component serves as the entry
point, invoking the main functions to run the face detection node and executing the functions defined
within face detection implementation.

Here is the file structure of the face detection package:

cssr system
face detection

config
face detection configuration.json

data
pepper topics.dat

models
face detection goldYOLO.onnx
face detection sixdrepnet360.onnx

msg
msg file.msg

src
face detection application.py
face detection implementation.py
face detection tracking.py

CSSR4AfricaLogo.svg
face detection requirements.txt
README.md
CMakeLists.txt
Package.xml

Figure 3: File structure of the face detection system

Date: 21/02/2025
Version: No 1.0

Page 12

D4.2.2 Face and Mutual Gaze Detection and
Localization

UML Diagram for the Face and Mutual Gaze Detection and Localization Module

The UML diagram provides a clear structural representation of the Face and Mutual Gaze Detec-
tion and Localization Module, illustrating the relationships between its core components. It high-
lights inheritance, where FaceDetectionNode serves as the base class, extended by MediaPipe and
SixDRepNet for specialized face detection and head pose estimation. Associations between track-
ing components such as Sort, CentroidTracker, and TrackerUtils emphasize how detected faces are
tracked using Kalman filtering and centroid-based methods. Composition relationships are depicted,
showing that SixDRepNet integrates YOLOONNX for face detection as an essential part of head pose
estimation, ensuring a modular and scalable system.

Below is the UML diagram of face detection implementation.py

FaceDetectionNode

+ config: dict or None
+ algorthim: str
+ pub_gaze: rospy.Publisher
+ bridge: CvBridge
+ depth_image: np.array or None
+ rgb_topic: str or None
+ depth_topic: str or None
+ image_sub: rospy.Subscriber or None
+ depth_sub: rospy.Subscriber or None

+ __init__(config=None)
+ subscribe_topics()
+ check_camera_resolution(rgb_image, depth_image) -> bool
+ resolve_model_path(path) -> str
+ read_json_file() -> dict or None
+ extract_topics(image_topic) -> str or None
+ depth_callback(data)
+ display_depth_image()
+ get_depth_at_centroid(centroid_x, centroid_y) -> float or None
+ get_depth_in_region(centroid_x, centroid_y, box_width,

box_height, region_scale=0.1) -> float or None
+ publish_face_detection(tracking_data)

MediaPipe

+ mp_face_mesh: mp.solutions.face_mesh.FaceMesh
+ face_mesh: mp.solutions.face_mesh.FaceMesh
+ mp_face_detection:
mp.solutions.face_detection.FaceDetection
+ face_detection: mp.solutions.face_detection.FaceDetection
+ mp_drawing: mp.solutions.drawing_utils
+ drawing_spec: mp.solutions.drawing_utils.DrawingSpec
+ centroid_tracker: CentroidTracker
+ latest_frame: np.array or None
+ timer: float
+ verbose_mode: bool

+ __init__(config)
+ image_callback(data)
+ spin()
+ process_face_mesh(frame, rgb_frame, img_h, img_w)
+ get_depth_at_centroid(centroid_x, centroid_y) -> float or None

(inherited from FaceDetectionNode)
+ publish_face_detection(tracking_data)

(inherited from FaceDetectionNode)
+ display_depth_image()

(inherited from FaceDetectionNode)

YOLOONNX

+ class_score_th: float
+ onnx_session: onnxruntime.InferenceSession
+ input_shape: List[int]
+ input_names: List[str]
+ output_names: List[str]

+ __init__(model_path: str, class_score_th: float = 0.65,
providers: List[str])
+ __call__(image: np.ndarray) -> Tuple[np.ndarray, np.ndarray]
+ spin()
+ __preprocess(image: np.ndarray) -> np.ndarray
+ __postprocess(image: np.ndarray, boxes: np.ndarray) ->

Tuple[np.ndarray, np.ndarray]

SixDrepNet

+ initialized: bool
+ yolo_model: YOLOONNX or None
+ sixdrepnet_session: onnxruntime.InferenceSession
+ latest_frame: np.array or None
+ mean: np.array
+ std: np.array
+ sort_tracker: Sort
+ tracks: List[np.ndarray]
+ timer: float
+ verbose_mode: bool

+ __init__(config: dict)
+ draw_axis(img: np.ndarray, yaw: float, pitch: float, roll: float,

tdx: int = None,
tdy: int = None, size: int = 100)

+ spin()
+ image_callback(msg: Image)
+ spin()
+ get_depth_in_region(cx: float, cy: float, width: float, height:

float) -> float or None
(inherited from FaceDetectionNode)

+ publish_face_detection(tracking_data: List[dict])
(inherited from FaceDetectionNode)

+ display_depth_image()
(inherited from FaceDetectionNode)

<< File: face_detection_implementation.py >>

Figure 4: Face detection implementation UML

Date: 21/02/2025
Version: No 1.0

Page 13

D4.2.2 Face and Mutual Gaze Detection and
Localization

Below is the UML diagram of face detection tracking.py

<< File: face_detection_tracking.py >>

TrackUtils

 + linear_assignment(cost_matrix) -> ndarray
 + iou_batch(bb_test, bb_gt) -> ndarray
 + associate_detections_to_trackers(detections, trackers,
iou_threshold=0.3) -> Tuple[ndarray, ndarray, ndarray]
 + convert_bbox_to_z(bbox: List[float]) -> ndarray
 + convert_x_to_bbox(x: ndarray, score=None) -> ndarray

KalmanBoxTracker

+ kf: KalmanFilter
+ id: int
+ time_since_update: int
+ history: List[ndarray]
+ hits: int
+ hit_streak: int
+ age: int

 + __init__(bbox: ndarray)
 + update(bbox: ndarray)
 + predict() -> ndarray
 + get_state() -> ndarray

Sort

+ max_age: int
+ min_hits: int
+ iou_threshold: float
+ trackers: List[KalmanBoxTracker]
+ frame_count: int

 + __init__(max_age=5, min_hits=3, iou_threshold=0.3)
 + update(detections=np.empty((0, 5))) -> ndarray

CentroidTracker

+ max_disappeared: int
+ distance_threshold: float
+ next_object_id: int
+ objects: OrderedDict[int, Tuple[float, float]]
+ disappeared: OrderedDict[int, int]

 + __init__(max_disappeared=50, distance_threshold=50)
 + register(centroid: Tuple[float, float])
 + deregister(object_id: int)
 + update(centroids: List[Tuple[float, float]]) -> OrderedDict[int,
 Tuple[float, float]]
+ match_centroids(centroids: List[Tuple[float, float]]) ->
 Dict[Tuple[float, float], int]

Figure 5: Face detection tracking UML

Date: 21/02/2025
Version: No 1.0

Page 14

D4.2.2 Face and Mutual Gaze Detection and
Localization

Configuration File

The operation of the face detection node is determined by the contents of the configuration file that
contains a list of key-value pairs as shown on the table below. The configuration file is named
face detection configuration.json.

Key Value Description
algorithm mediapipe or sixdrep Specifies which algorithm to use.
mp facedet confidence <number> Specifies the confidence threshold for the

mediapipe face detection algorithm.
mp headpose angle <number> Specifies the maximum angular deviation

(in degrees) for mediapipe head pose esti-
mation.

centroid max distance <number> Specifies the maximum allowed distance
(in pixels) between centroids for tracking
continuity.

centroid max disappeared <number> Specifies the maximum number of frames
a centroid can disappear before being con-
sidered lost.

sixdrepnet confidence <number> Specifies the confidence threshold for the
SixDRepNet pose estimation algorithm.

sixdrepnet headpose angle <number> Specifies the maximum angular deviation
(in degrees) for SixDRepNet head pose
estimation.

sort max disappeared <number> Specifies the maximum number of frames
an object can disappear for Sort tracker
before being removed.

sort min hits <number> Specifies the minimum number of consec-
utive hits required for Sort tracker initial-
ization.

sort iou threshold <number> Specifies the Intersection over Union
(IoU) threshold for Sort tracker associa-
tions.

verbose mode true or false Specifies whether diagnostic data is to be
printed to the terminal and diagnostic im-
ages are to be displayed in OpenCV win-
dows.

Table 2: Configuration file key-value pairs for the face detection node.

Input File

There is no input file the face detection node.

Date: 21/02/2025
Version: No 1.0

Page 15

D4.2.2 Face and Mutual Gaze Detection and
Localization

Output File

There is no output file the face detection node. The node using OpenCV to display the detected faces
with bounding boxes and labels, and the mutual gaze detection.

Launch File

The launch file face detection launch robot.launch is designed to initialize either Pep-
per’s front camera or the Intel RealSense camera based on the specified configuration. It declares
several parameters that can be customized to match your network settings and camera choice:

• pepper robot ip: specifies the IP address of the Pepper robot (default: 172.29.111.230).

• pepper robot port: specifies the communication port for Pepper (default: 9559).

• network interface: specifies the network interface name (default: wlp0s20f3).

• namespace: sets the ROS namespace for the naoqi driver (default: naoqi driver).

• camera: selects the camera source; set to pepper for Pepper’s front camera or realsense
for the Intel RealSense camera (default: realsense).

• unit test: determines whether to run unit tests (default: False).

The file sets the parameter /faceDetection/camera to the chosen camera and conditionally
launches the corresponding nodes. If the camera parameter is set to pepper, the launch file starts
the naoqi driver node using the provided IP, port, network interface, and namespace. Conversely,
if camera is set to realsense, it includes the RealSense camera launch file with specified param-
eters for image resolution, frame rate, and depth alignment. Users can adjust these default values to
suit their specific hardware configurations.

Models

The face detection node uses two models for face detection and head pose estimation. The models are
stored in the models directory. The models are:

Model Description
face detection goldYOLO.onnx YOLO-based face detection model.

face detection sixdrepnet360.onnx SixDRepNet head pose estimation model.

Table 3: Models used by the face detection node.

Topics File

For the test, a selected list of the topics for the robot is stored in the topics file. The topic files are
written in the .dat file format. The data file is written in key-value pairs where the key is the camera
and the value is the topic. The topics file for the robot is named pepper topics.dat.

Topics Subscribed

The face detection node subscribes to the following topics:

Date: 21/02/2025
Version: No 1.0

Page 16

D4.2.2 Face and Mutual Gaze Detection and
Localization

Camera Topic Name Message Type
RealSenseCameraRGB /camera/color/image raw sensor msgs/Image

RealSenseCameraDepth /camera/aligned depth to color/image raw sensor msgs/Image

PepperFrontCamera /naoqi driver/camera/front/image raw sensor msgs/Image

PepperDepthCamera /naoqi driver/camera/depth/image raw sensor msgs/Image

Table 4: Topics subscribed by the face detection node.

Topics Published

The face detection node publishes the following topics:

Topic Name Message Type Description
/faceDetection/data faceDetection/msg file An array of records containing

face labels, 3D image coordinates

of the bounding box and a boolean

value indicating mutual gaze

detection.

Table 5: Topics published by the face detection node.

Date: 21/02/2025
Version: No 1.0

Page 17

D4.2.2 Face and Mutual Gaze Detection and
Localization

6 Running the Face Detection Node

To run the face detection node, the user must first install the necessary software packages as outlined in
Deliverable 3.3. The required packages are listed in the face detection requirements.txt
file. The user can follow the README file in the face detection package to install the required
packages. Refering to the implementation section of this deliverble report, the user must set the
configuration file to the desired parameters. Using the key-value pair, the user can set the camera,
algorithm, confidence threshold, and other parameters. The user can then run the face detection node
by executing the following command in the terminal:

Launch either Pepper Camera or RealSense Camera from the launch file
$ roslaunch face_detection face_detection.launch camera:=pepper
or
$ roslaunch face_detection face_detection.launch camera:=realsense

Run the face detection node
$ rosrun face_detection face_detection_application.py

If the user has set the verbose mode to True in the configuration file, the face detection node will
display the detected faces with bounding boxes and labels, as well as the mutual gaze detection in
an OpenCV window. The user can then interact with the Pepper robot to establish mutual gaze and
observe the system’s response.

Date: 21/02/2025
Version: No 1.0

Page 18

https://cssr4africa.github.io/deliverables/CSSR4Africa_Deliverable_D3.3.pdf

D4.2.2 Face and Mutual Gaze Detection and
Localization

7 Unit Test

The unit test is designed to validate the face detection node’s functionality under various scenarios,
including multiple faces, occlusions, and varying lighting conditions. The test can be performed using
a driver-stub test platform, which utilizes recorded color and depth images stored in the data folder as
a rosbag file. The unit test can also be executed directly on the physical robot to validate real-world
performance.

The face detection unit test file structure is as follows:

unit test
face detection test

config
face detection test configuration.json

data
face detection input singleFace.bag
face detection input multipleFaces.bag
face detection input faceTracking.bag
face detection input mutualGaze.bag
face detection input occlusion.bag
face detection input lighting.bag

launch
face detection launch robot.launch
face detection launch testHarness.launch

src
face detection test application.py
face detection test implementation.py

CMakeLists.txt
Package.xml
README.md

Figure 6: File structure of the face detection unit test.

The test cases for the face detection node that are going to be evaluated are as follows:

Test Case Description
Single Face Detection Verify the face detection node’s ability to detect and localize a

single face in the image frame, as well as evaluate the distance at
which the face is detected.

Multiple Face Detection Validate the face detection node’s capability to detect and localize
multiple faces in the image frame.

Face Tracking Test the face detection node’s tracking functionality by tracking a
face across multiple frames.

Mutual Gaze Detection Confirm the face detection node’s ability to detect mutual gaze
between the robot and the user.

Occlusion Handling Evaluate the face detection node’s performance in handling par-
tial occlusions of faces.

Date: 21/02/2025
Version: No 1.0

Page 19

D4.2.2 Face and Mutual Gaze Detection and
Localization

Test Case Description
Lighting Conditions Test the face detection node’s robustness under varying lighting

conditions.

Table 6: Test cases for face detection node evaluation (continued across pages).

Configuration File

The configuration file for the face detection unit test is named
face detection test configuration.json and contains the following key-value pairs:

Key Value Description
algorithm sixdrep or

mediapipe
Specifies the algorithm used for face detec-
tion and head pose estimation.

bag file <test name> Specifies the ROS bag file used as input for
testing.

save video true or false Specifies whether to save the output video
of the test.

save image true or false Specifies whether to save individual image
frames from the test.

video duration <number> Specifies the duration (in seconds) for
which the video is saved.

image interval <number> Specifies the time interval (in seconds) at
which images are captured and saved.

speaker true or false Enables the speaker to announce which test
is currently running.

verbose mode true, false Specifies whether detailed logs and diagnos-
tic images are displayed during execution.

Table 7: Configuration file key-value pairs for the face detection test.

Note: Valid values for bag file include: singleFace, multipleFaces, faceTracking,
mutualGaze, occlusion, lighting.

Date: 21/02/2025
Version: No 1.0

Page 20

D4.2.2 Face and Mutual Gaze Detection and
Localization

References

[1] Joseph Redmon and Ali Farhadi. Yolo9000: Better, faster, stronger. Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages 7263–7271, 2017.

[2] Nataniel Ruiz, Eunji Chong, and James M Rehg. Sixdrepnet: 6d rotation representation for head
pose estimation. In European Conference on Computer Vision (ECCV), 2022.

[3] Google AI. Mediapipe face landmarker: Real-time face detection and landmark detec-
tion. https://ai.google.dev/edge/mediapipe/solutions/vision/face_
landmarker, 2024. Accessed: February 15, 2025.

[4] Nicolai Wojke, Alex Bewley, and Dietrich Paulus. Simple online and realtime tracking with a
deep association metric. arXiv preprint arXiv:1703.07402, 2017.

Date: 21/02/2025
Version: No 1.0

Page 21

https://ai.google.dev/edge/mediapipe/solutions/vision/face_landmarker
https://ai.google.dev/edge/mediapipe/solutions/vision/face_landmarker

D4.2.2 Face and Mutual Gaze Detection and
Localization

Principal Contributors

The main authors of this deliverable are as follows (in alphabetical order).

Yohannes Haile, Carnegie Mellon University Africa.
David Vernon, Carnegie Mellon University Africa.

Date: 21/02/2025
Version: No 1.0

Page 22

D4.2.2 Face and Mutual Gaze Detection and
Localization

Document History

Version 1.0
First draft.
Yohannes Haile.
21 February 2025.

Date: 21/02/2025
Version: No 1.0

Page 23

	Introduction
	Requirements Definition
	Module Specifications
	Module Design
	Implementation
	Running the Face Detection Node
	Unit Test
	References
	Principal Contributors
	Document History

