
Culturally Sensitive Social Robotics
for Africa

D4.1 Sensor Tests

Due date: 1/10/2023
Submission Date: 26/03/2024

Revision Date: 31/05/2025

Start date of project: 01/07/2023 Duration: 36 months

Lead organisation for this deliverable: Carnegie Mellon University Africa

Responsible Person: Yohannes Haile Revision: 1.1

Project funded by the African Engineering and Technology Network (Afretec)
Inclusive Digital Transformation Research Grant Programme

Dissemination Level
PU Public PU
PP Restricted to other programme participants (including Afretec Administration)
RE Restricted to a group specified by the consortium (including Afretec Administration)
CO Confidential, only for members of the consortium (including Afretec Administration)

D4.1 Sensor Tests

Executive Summary

Deliverable D4.1 aims to create a robust suite of unit tests to verify that sensor data is successfully
acquired on each sensor topic. The key components of this deliverable include a ROS node called
sensorTest, a report documenting the development process, requirements refinement and specify-
ing functional characteristics, and a user manual on how to build and launch the module. The interface
design encompasses input, output, and control data. Suitable data structures are specified, and coding
adheres to software engineering standards.

Date: 31/05/2025
Version: No 1.1

Page 2

D4.1 Sensor Tests

Contents

1 Introduction 4

2 Requirements Definition 6

3 Module Specifications 7

4 Interface Design 8

5 Module Design 13

6 Executing the Sensor Test 14
6.1 Intel RealSense D435i Camera Test . 14
6.2 Bottom, Front, and Stereo Camera Test . 15
6.3 Depth Camera Test . 17
6.4 Front and Back Sonar Test . 18
6.5 Laser Test . 18
6.6 Microphone Test . 19
6.7 Joint State Test . 20
6.8 Odometry Test . 21
6.9 IMU Sensor Test . 21
6.10 Speech Test . 22

References 23

Principal Contributors 24

Document History 25

Date: 31/05/2025
Version: No 1.1

Page 3

D4.1 Sensor Tests

1 Introduction

This deliverable is dedicated to ensuring the optimal functionality of the sensors on the Pepper robot
(or simulator), with a primary focus on verifying their ability to successfully acquire data from their
designated topics. Illustrated in Figure 1, the diverse array of sensors on Pepper plays a critical role
in shaping its perception and interactive capabilities.

At the core of Pepper’s visual perception are the dual RGB cameras, functioning as its primary set
of visual sensors. These cameras capture images with a broad range of resolutions, offering Pepper
a comprehensive view from two distinct fields of vision. Working in tandem with the RGB cameras,
the depth sensor enriches Pepper’s spatial understanding by providing essential information about the
distance to objects in its environment. The microphones are equipped to give Pepper auditory per-
ception capabilities. This feature is pivotal for speech recognition, sound detection, and localization
which facilitates effective communication with users.

Supplementing Pepper’s tactile interaction capabilities are the touch sensors distributed in the head
and hand sensor areas. These sensors enhance the robot’s ability to engage naturally with humans and
its surroundings, fostering interactive and intuitive experiences. The sonar sensor further contributes
to Pepper’s environmental awareness by gauging distances to nearby objects, proving integral to tasks
such as navigation, obstacle avoidance, and maintaining spatial awareness during movement.

For Pepper’s physical coordination, the gyroscope and accelerometer sensors are used to detect
changes in orientation and acceleration respectively. This information is vital for the robot to main-
tain balance and coordination across a spectrum of activities. Additionally, the laser sensor introduces
another layer to Pepper’s environmental perception, emitting laser beams and measuring their reflec-
tions.

Head Touch Sensor x3

Camera x2

Microphones x4

Stereo Camera x1

Depth Camera

Hand Touch Sensor

Gyroscopes x2

Infra-Red Sensor x2

Sonars x2

Bumpers x3Laser sensor x6

Figure 1: Pepper robot sensors

Date: 31/05/2025
Version: No 1.1

Page 4

D4.1 Sensor Tests

The ROS-NAOqi driver provides a bridge between ROS(Robot Operating System) and NAOqiOS,
the operating system of Aldebaran’s Nao, Pepper, and Romeo robots [1]. The driver publishes all
sensor and actuator data as well as basic diagnostic information for battery and temperature. It also
subscribes to RViz and cmd vel for teleportation. The ROS-NAOqi Interface comprises ROS nodes
that interact with NAOqi via the NAOqi messaging API. These nodes can subscribe to and publish
ROS topics, facilitating communication with other ROS nodes.

Date: 31/05/2025
Version: No 1.1

Page 5

D4.1 Sensor Tests

2 Requirements Definition

The sensor test provides a systematic process aimed at understanding and documenting the func-
tionality needs that the module must fulfill. This deliverable is important in identifying the specific
users expectations, ensuring that the module will be capable of performing the precise sensor tests in
various scenarios and environments. The test encompasses a thorough examination of the intended
functionality, the user’s needs, and the project’s objectives to ensure that the module will meet the
requirements of the project.

As seen from the diagram in Figure 1, the Pepper robot is equipped with a variety of sensors that
are essential for its operation. For this deliverable, the camera sensors will be tested to ensure that
they can capture images and videos. The depth sensor will be tested to ensure that it can capture depth
information. The microphone sensor will be tested to ensure that it can capture audio data. The IMU
sensor will be tested to ensure that it can capture orientation and acceleration data. The sonar sensor
will be tested to ensure that it can capture distance data. The laser sensor will be tested to ensure that
it can capture distance data. The odometry sensor will be tested to ensure that it can capture odometry
data. The joint states sensor will be tested to ensure that it can capture joint state data for the joint
actuator of the robot. Exceptionally, the loudspeaker, even though it is not a sensor, will be tested to
ensure that it can speak out the text provided to it.

Misalignment of the Module

Due to the unavailability of the head touch, hand touch, and bumper sensors, the module will not be
able to test these sensors. Given the current status of the project, we have opted to suspend work on it,
as we have not identified a direct application for these sensors. However, should the future direction
of our project necessitate the integration of these sensors due to their potentially critical role, we will
undertake efforts to ensure their functionality.

In regards to the sensor test for the simulator, the microphone sensor, IMU, stereo camera, and
loudspeaker test will not be conducted as they are not available in the simulator. Furthermore, the
Gazebo simulator will raise errors when testing for the camera is conducted in parallel mode. There-
fore, the camera sensors should be tested in sequential mode.

Date: 31/05/2025
Version: No 1.1

Page 6

D4.1 Sensor Tests

3 Module Specifications

To validate the functionality of the sensors, the sensor test module is designed to execute a series of
tests on the sensors. The sensor test module is a ROS node that subscribes to the sensor topics and
verifies that the sensors can capture data. The sensor test module is designed to test the following

• Back Sonar

• Front Sonar

• Bottom Camera

• Front Camera

• Depth Camera

• Stereo Camera (not available in the simulator)

• Realsense RGB Camera (not available in the simulator)

• Realsense Depth Camera (not available in the simulator)

• Laser Sensor

• Microphone (not available in the simulator)

• Joint State

• Odometry

• IMU (not available in the simulator)

• Speech (Loudspeaker) (not available in the simulator)

All of the sensors will be tested for 10 seconds, whereas the microphone sensor will be tested for a
total of 40 seconds, where each microphone will be tested for 10 seconds. For the loudspeaker, a text
will passed on it to speak out. The sensor test will be conducted in two modes: parallel and sequential.
In the parallel mode, all the sensors will be tested at the same time, whereas in the sequential mode,
the sensors will be tested one after the other. The sensor test will be conducted for both the robot and
the simulator.

To test the sensors, the sensor test module will read various configuration files that contain the
necessary information for the test. The configuration files include the sensor test configuration file,
the sensor test input file, and the topics file. The sensor test configuration file contains the platform
to be tested, the mode of the test, and the topics file for the robot and simulator. The sensor test
input file contains the sensors to be tested. The topics file contains the list of topics for the robot
and simulator. The sensor test module will publish the results of the test to the sensor test output
file. Furthermore, the sensor test module will record the video and audio data for the camera and
microphone sensors respectively, and store them in the data directory as specified by the user in the
sensorTestImplementation.cpp file.

Date: 31/05/2025
Version: No 1.1

Page 7

D4.1 Sensor Tests

4 Interface Design

File Structure and Organization

The source code for conducting sensor tests is structured into two primary components:
sensorTestApplication and sensorTestImplementation. The sensorTestImplemen-
tation component encapsulates all the essential functionality required for executing comprehensive
sensor tests. This includes all of the tests for the sensors that consist of the bottom, front, and stereo
camera, depth camera, sonar, laser, odom, microphone, speech, and joint states. In addition to sensor
testing capabilities, this component is also equipped with the functionality to process various files
critical for the testing process, such as configuration files, input files, and topics files.

On the other hand, the sensorTestApplication invokes those functions for the testing process. It is
tasked with executing functions defined within the sensorTestImplementation, effectively managing
the sensor test operations.

Here is the file structure of the pepper interface tests package:

pepper interface tests
config

actuatorTestConfiguration.ini
actuatorTestInput.ini
sensorTestInput.ini
sensorTestConfiguration.ini

data
pepperTopics.dat
sensorTestOutput.dat
simulatorTopics.dat

include
pepper interface tests

actuatorTestInterface.h
sensorTestInterface.h

launch
actuatorTestLaunchRobot.launch
sensorTestLaunchRobot.launch
interfaceTestLaunchSimulator.launch

src
actuatorTestApplication.cpp
actuatorTestImplementation.cpp
sensorTestApplication.cpp
sensorTestImplementation.cpp

README.md
CMakeLists.txt
package.xml

Date: 31/05/2025
Version: No 1.1

Page 8

D4.1 Sensor Tests

Configuration File

The operation of the sensorTest node is determined by the contents of the configuration file that
contains a list of key-value pairs as shown below.

The configuration file is named sensorTestConfiguration.ini

Table 1: Configuration file for the sensor test.

Key Value Description
platform simulator or robot Specifies the platform to be tested. The platform

can be set to either simulator or robot.
robotTopics robotTopics.dat Specifies the name of the robot topics file. The

robot topics file contains the list of topics for the
robot.

simulatorTopics simulatorTopics.dat Specifies the name to the simulator topics file. The
simulator topics file contains the list of topics for
the simulator.

mode parallel or sequential Specifies the mode of the test. The mode can be
either parallel or sequential. The parallel
mode runs all the tests in parallel. The sequential
mode runs all the tests sequentially.

Input File

The input file is used to specify which sensors to test by using the sensor name as the key and True
or False as the value. The sensor name must be the same as the sensor name in the topics file.

The input file is named sensorTestInput.ini

Output Data File

The output data file is used to store the results of the sensor tests. The output data file is written in the
.dat file format. It logs relevant information such as sensor names, image resolutions, encodings,
and test results. The specific content depends on the type of sensor being tested.

The detailed structure and examples of the output file are provided in the Results section.
The output data file is named sensorTestOutput.dat.
Furthermore, the recorded video and audio files are stored in the data directory. These files

include:

• frontCameraOutput.mp4

• bottomCameraOutput.mp4

• stereoCameraOutput.mp4

• depthCameraOutput.mp4

• realsenseRGBOutput.mp4

• realsenseDepthOutput.mp4

• microphoneOutput.wav

Each file corresponds to a specific sensor and is used for offline analysis and documentation of the
test results.

Date: 31/05/2025
Version: No 1.1

Page 9

D4.1 Sensor Tests

Topics File

For the test, a selected list of the topics for the robot and simulator is stored in the topics file. The
topic files are written in the .dat file format. The data file is written in key-value pairs where the key
is the sensor name and the value is the topic

The topics file for the robot is named robotTopics.dat and the topics file for the simulator is
named simulatorTopics.dat

Topics Subscribed

The sensorTest node subscribes to the following topics:

Table 2: Topics subscribed by the sensorTest node.

Topic Sensor Platform
/naoqi driver/camera/bottom/image raw Bottom Camera robot

/naoqi driver/camera/depth/image raw Depth Camera robot

/naoqi driver/camera/front/image raw Front Camera robot

/naoqi driver/camera/stereo/image raw Stereo Camera robot

/camera/color/image raw RealSenseCameraRGB robot

/camera/aligned depth to color/image raw RealSenseCameraDepth robot

/naoqi driver/audio Microphone robot

/naoqi driver/imu/base IMU Sensor robot

/naoqi driver/sonar/front Sonar Sensor robot

/naoqi driver/sonar/back Sonar Sensor robot

/naoqi driver/laser Laser robot

/naoqi driver/odom Odometry robot

/joint states Joint States robot

/pepper/sonar back Back Sonar simulator

/pepper/sonar front Front Sonar simulator

/pepper/camera/bottom/image raw Bottom Camera simulator

/pepper/camera/depth/image raw Depth Camera simulator

/pepper/camera/front/image raw Front Camera simulator

/pepper/laser 2 Laser simulator

/pepper/odom Odometry simulator

/joint states Joint States simulator

Topics Published

As explained earlier, the speech topic is listed under the sensor topics because its topic is available
under the NAOqi driver sensor topics. The sensorTest node publishes the following topics:

Table 3: Topics published by the sensorTest node.

Topic Actuator Platform
/speech Speakers robot

Date: 31/05/2025
Version: No 1.1

Page 10

D4.1 Sensor Tests

Launch File

The launch file is used to launch the sensor test. sensorTestLaunchRobot.launch file is used
for the robot and sensorTestLaunchSimulator.launch for the simulator. The launch file
has the following parameters:

• robot ip: specifies the IP address of the robot.

• roscore ip: specifies the IP address of the roscore.

• network interface: specifies the network interface name.

A default value is provided for each parameter in the launch file. For the robot ip, the default value
is 172.29.111.230 and for the network interface, the default value is eth0. The roscore ip
parameter can be specified by the user as identified using ifconfig command. But the default
value works hence the user can skip specifying the roscore ip parameter. If the user has a different
network interface name, the user can change the default value specified in the launch file.

Three nodes are launched in the launch file: naoqi driver node, naoqiAudio, and
naoqiAudioPublisher. The naoqi driver node is primarily responsible for publishing
sensor data from the robot to various topics, excluding audio data. For audio data acquisition, the
naoqiAudio node is introduced. This node leverages the Python SDK to capture audio data di-
rectly from the robot. Due to compatibility issues, as the Python SDK operates under Python 2 which
is not directly integrable with ROS-Noetic which runs Python 3. The naoqiAudioPublisher
node bridges this gap through the use of web sockets, facilitating the transfer of audio data from the
SDK to ROS. This node plays a crucial role in processing the audio data by deinterleaving it and then
publishing the processed audio to the /naoqi driver/audio topic.

Date: 31/05/2025
Version: No 1.1

Page 11

D4.1 Sensor Tests

The diagram below shows the data flow of the sensor test.

Configuration file
(sensorTestConfiguration.ini)

Processing the Input
file

extractTest()

End

Output data
(SensorTestOutput.dat)

Input file
(sensorTestInput.dat)

Is this sensor in the
list to

be tested?

Input File
(pepperTopic.dat or
simulatorTopic.dat)

Configuration file
(sensorTestConfiguration.ini)

Extracting the topic name
extractTopic()

Run the sensor Test

Extracting the mode
extractMode()

NO

Yes

Check if the end of
the list is reached

NO

YesMoving to the next sensor

Start

Figure 2: Data Flow Diagram of the Sensor Test.

Date: 31/05/2025
Version: No 1.1

Page 12

D4.1 Sensor Tests

5 Module Design

For testing the physical robot, the NAOqi driver is used to subscribe to the sensor topics. The driver
provides a hardware interface to connect to Aldebaran Nao, Romeo, and Pepper robot. The module
first reads the configuration file to get the mode of the test, the platform to be tested, and the topics
file for the robot. The module then reads the input file to get the sensors to be tested. The module then
reads the topics file to get the topics for the robot. The module then subscribes to the topics for the
robot and tests the sensors.

For the sonar sensor, the module subscribes to the sonar topics. The module then verifies that the
sonar sensor can capture distance data. The module then logs the distance data to the output data file.
For testing the sonar it uses sensor msgs/Range message type. This message type represents
a standardized way to express distance measurements typically gathered from range-sensing devices
such as sonar, infrared(IR) sensors, and lidar.

For the camera sensors, the module subscribes to the camera topics. The module then verifies that
the camera sensor can capture image data. The module then logs the image data to the output data
file. For testing the camera sensors, it uses the sensor msgs/Image message type. The video data
is recorded and stored in the data directory using the cv::VideoWriter class from the OpenCV
library.

For the depth camera sensor, the module subscribes to the depth camera topic. The module then
verifies that the depth camera sensor can capture image data. The module then logs the image data to
the output data file. For testing the depth camera sensor, it uses the sensor msgs/Image message
type. The video data is recorded and stored in the data directory using the cv::VideoWriter class
from the OpenCV library.

For the laser sensor, the module subscribes to the laser topics. The module then verifies that the
laser sensor can capture distance data. The module then logs the distance data to the output data file.
For testing the laser sensor, it uses the sensor msgs/LaserScan message type. This message
type represents a 1D scan from a planar laser range-finder.

For the microphone sensor, the module subscribes to the audio topic. The module then verifies that
the microphone sensor can capture audio data. For testing the microphone sensor, it uses a custom
message type named naoqi driver/AudioCustomMsg. This message type represents audio
data for the four microphones of the Pepper robot. The audio data is recorded and stored in the data
directory. The audio is recorded using .wav format.

For the joint state sensor, the module subscribes to the joint state topics. The module then verifies
that the joint state sensor can capture joint state data. The module then logs the joint state data to the
output data file. For testing the joint state sensor, it uses the sensor msgs/JointState message
type. This message type represents the state of the robot’s joints.

For the odometry sensor, the module subscribes to the odometry topics. The module then verifies
that the odometry sensor can capture odometry data. The module then logs the odometry data to the
output data file. For testing the odometry sensor, it uses the nav msgs/Odometry message type.
This message type represents the odometry data for the robot.

For the IMU sensor, the module subscribes to the IMU topics. The module then verifies that the
IMU sensor can capture IMU data. The module then logs the IMU data to the output data file. For
testing the IMU sensor, it uses the sensor msgs/Imu message type. This message type represents
the IMU data for the robot.

For the speech, the module publishes the text to the speech topic. The module then verifies that
the speech can speak out the text. The module then logs the text to the output data file. For testing the
speech, it uses the std msgs/String message type that represents a string message.

Date: 31/05/2025
Version: No 1.1

Page 13

D4.1 Sensor Tests

6 Executing the Sensor Test

To start the sensor test, the user must first install the necessary software packages as outlined in
Deliverable D3.3. Furthermore, you can refer to how to get the parameters for the robot IP, roscore
IP, and network interface from Deliverable D3.3. Referring to the interface section, the user must set
the platform to be tested, and specify which mode to run the test. Then using key-value pairs, the user
must specify which sensors to test by using the sensor name as the key and True or False as the
value.

To launch the sensor test, the user must run the following command:

Launch the sensors for the physical robot
roslaunch pepper_interface_tests sensorTestLaunchRobot.launch \
robot_ip:=<robot_ip> roscore_ip:=<roscore_ip> \
network_interface:=<network_interface_name>

Launch the interfaceTestLaunchSimulator for the simulator
roslaunch pepper_interface_tests interfaceTestLaunchSimulator.launch

The above commands will launch the sensor test for the robot and simulator.
It’s important to note that the tests for actuators and sensors are designed to function autonomously,

allowing for the execution of sensor tests without necessitating the robot’s activation. However, when
conducting these tests in a sleep state, the robot’s camera will orient downwards due to its sitting
posture. To circumvent this and achieve a frontal camera perspective, users have the option to first
awaken the robot. This can be achieved by launching the actuator file, thereby transitioning the robot
to an upright position. Following this, conducting the sensor test will yield a direct camera feed,
ensuring optimal test conditions and results.

Launch the robot sensor and actuator
roslaunch pepper_interface_tests actuatorTestLaunchRobot.launch \
robot_ip:=<robot_ip> roscore_ip:=<roscore_ip> \
network_interface:=<network_interface_name>

The sensorTest node will then run the test and store the result in the output data file. To run
the test, the user must run the the following command:

Run the sensor test
rosrun pepper_interface_tests sensorTest

6.1 Intel RealSense D435i Camera Test

Due to the limitations of Pepper’s built-in depth camera, as discussed in Section 6.3, an Intel Re-
alSense D435i camera is mounted on top of Pepper’s head to serve as an alternative sensor. The
RealSense D435i provides both RGB (color) and depth image streams, making it suitable for robust
visual and spatial perception tasks. This test aims to validate the functionality, data integrity, and
operational readiness of both camera streams.

RGB Camera Test

The RGB camera test verifies that the RealSense D435i’s color sensor is actively publishing valid im-
age data. By subscribing to the relevant RGB image topic, the system receives real-time color frames,
which are displayed in an OpenCV window labeled RealSense RGB Camera. This provides
immediate visual confirmation that the sensor is functioning as expected.

Date: 31/05/2025
Version: No 1.1

Page 14

https://cssr4africa.github.io/deliverables/CSSR4Africa_Deliverable_D3.3.pdf

D4.1 Sensor Tests

In addition to visualization, the test logs metadata such as image width, height, encoding format,
and step size to an output file. This information is useful for debugging and ensures compatibility
with downstream processing. When video recording is enabled, the RGB stream is saved as a .mp4
file using the BGR color format for later review.

Depth Camera Test

The depth camera test subscribes to the depth image topic published by the RealSense D435i, which
provides 16-bit per-pixel depth values. These values are scaled and converted to an 8-bit grayscale
image to facilitate visualization. The resulting image is shown in an OpenCV window titled Depth
Camera, where pixel intensity represents distance: darker tones correspond to nearer objects, while
lighter tones indicate farther distances within a predefined range.

As with the RGB test, the depth image’s resolution is logged, and the video stream may option-
ally be recorded for offline playback. This supports the analysis of sensor performance and spatial
awareness capabilities during operation.

Both camera tests are conducted over a fixed duration (e.g., 10 seconds) to verify that the Re-
alSense D435i is correctly integrated and capable of continuously publishing high-quality visual data
in real time.

(a) RealSense D435i RGB Camera Output. (b) RealSense D435i Depth Camera Output.

Figure 3: Visual outputs from the Intel RealSense D435i camera. The RGB image shows the color
view, while the depth image is rendered in grayscale.

6.2 Bottom, Front, and Stereo Camera Test

The tests for the bottom, front, and stereo cameras are designed to evaluate the operational status of
these essential sensors. By subscribing to the respective topics for each camera, the test confirms the
continuous data publication, ensuring the cameras are functioning correctly. Utilizing the OpenCV
library, the tests offer a visual confirmation by displaying images captured from the bottom, front,
and stereo cameras. Each image is presented in a dedicated window, labeled with the corresponding
sensor’s name, allowing a visualization process. These images are displayed for 10 seconds. The test
for these cameras will also log the width and height of the image.

It’s important to note the distinction in camera availability between physical and simulator robots.

Date: 31/05/2025
Version: No 1.1

Page 15

D4.1 Sensor Tests

Specifically, the stereo camera is exclusive to the physical robot, with no equivalent functionality in
the simulator environment.

To initiate these tests, first, verify that the input file correctly enables the cameras by setting the
key-value pairs for the front, bottom, and stereo cameras to True. Once confirmed, execute the
designated command to launch the sensor tests on the robot.

The subsequent visualization results will provide a clear comparison between the capabilities of
both the physical and simulator robots, highlighting the operational status and functionality of the
tested cameras. This approach ensures a comprehensive assessment of the camera sensors, catering to
both physical and simulated environments.

For more technical detail regarding the 2 RGB camera equipped on the robot, refer to the Pepper
2D camera technical detail. Regarding the stereo camera, refer to the Pepper stereo camera technical
detail.

(a) Front camera Image for Physical Robot. (b) Front camera Image for the Simulator.

Figure 4: Front Camera Image Result.

(a) Bottom camera Image for Physical Robot. (b) Bottom camera Image for the Simulator.

Figure 5: Bottom Camera Image Result

As seen from the figure 6, the stereo camera is displaying the pair of images captured by the two
cameras side by side.

Date: 31/05/2025
Version: No 1.1

Page 16

http://doc.aldebaran.com/2-5/family/pepper_technical/video_2D_pep.html#d-camera-pepper
http://doc.aldebaran.com/2-5/family/pepper_technical/video_2D_pep.html#d-camera-pepper
http://doc.aldebaran.com/2-5/family/pepper_technical/video_Stereo_pep.html#stereo-camera-pepper
http://doc.aldebaran.com/2-5/family/pepper_technical/video_Stereo_pep.html#stereo-camera-pepper

D4.1 Sensor Tests

Figure 6: Stereo Camera Image for the Physical Robot.

The robot is equipped with dual cameras: a bottom camera and a front camera, capable of captur-
ing RGB format images that support multiple resolutions: QQVGA(160x120), QVGA(320x240),
and VGA(640x480). The selection of the desired resolution can be configured by modifying the
file src/naoqi driver/share/boot config.json settings. You can specify the resolution
by using specifying the integer accordingly to the once specified as " comment": "QQVGA =
0, QVGA = 1, VGA = 2". This allows for flexible adaptation of image resolution based on the
requirements of specific tasks or applications. The FPS parameter can be used to adjust the frame rate
of the robot but as the number of sensor increase the frame rates that could be achieved decrease. Dur-
ing the testing, the highest frame rate that could be achieved was 1.3 FPS. However, after turning off
most of the sensors except the front camera, the odometry, and the joint state, the frame rate increased
to 3.0 FPS. Therefore, this still could be limiting for some applications that require high frame rates.

6.3 Depth Camera Test

The depth camera test rigorously assesses the sensor’s functionality by subscribing to its topic to
confirm data flow and visualizing the output using the OpenCV library. Depth images are displayed in
grayscale, with pixel intensity indicating the proximity to the camera, showcased in a window for 10
seconds. The depth sensor, which employs stereo camera technology, demonstrates limited efficacy
when used at distances greater than one meter. This limitation significantly impacts tasks such as
environment map generation (D5.5.3) that rely on Simultaneous Localization and Mapping (SLAM)
techniques. The inherent constraints of the depth camera’s calibration process at extended ranges pose
challenges to achieving accurate and reliable results. Therefore, it is imperative to explore alternative
methodologies to fulfill the requirements of such tasks effectively.

Similarly to test the depth sensor for the physical robot or simulator, the user must set the key-value
pair for the depth camera to True in the input file. Then execute sensorTest node to run the test.

As mentioned earlier, the depth camera is reconstructed from the stereo camera. For more technical
details regarding the depth camera, refer to the Pepper 3D camera technical detail.

The depth image shown in Figure 7a is an image captured by the stereo camera shown in Figure 6
which is converted to a depth image. Similarly, the Depth image for the simulator is shown in Figure
7b. However, for both the physical robot and simulator, the depth image doesn’t provide a very clear
image that can be used for depth measurement.

Date: 31/05/2025
Version: No 1.1

Page 17

http://doc.aldebaran.com/2-5/family/pepper_technical/video_2D_pep.html#d-camera-pepper

D4.1 Sensor Tests

(a) Depth Camera Image for Physical Robot. (b) Depth Camera Image for Simulator.

Figure 7: Depth Camera Result.

6.4 Front and Back Sonar Test

The sonar test is designed to capture and log the sensor’s data both on the terminal for immediate
observation and into an output file named sensorTestOutput.dat for references. During the
test, the node will subscribe to the sonar topics for both the front and sonar sensors. To test the sonar
sensor, the user must set the key-value pair for the front sonar and back sonar to True in the input
file. Then execute the sensorTest node to run the test. The sonar sensor is capable of detecting objects
within a range. Key metrics such as the range for object proximity is recorded. Upon receiving data,
the test outputs a series of messages that detail:

Table 4: Sonar Test Output Data.

Data Description
Frame ID An identifier for the sensor data frame, ensuring that the data can be accurately corre-

lated with its source and time of capture.
Field of View The angular extent of the observable world that the sonar sensor captures at any given

moment.
Min Range The shortest distance at which the sonar sensor can reliably detect objects.
Max Range The furthest distance within which the sensor can effectively perceive objects.
Range The actual distance measured by the sonar sensor to the detected object, providing a

directed indication of the object’s proximity.

Furthermore, please refer to the Pepper sonar technical detail for more technical detail such as
frequency, resolution, vertical, and horizontal field of view.

6.5 Laser Test

The laser test is designed to capture and log the sensor’s data both on the terminal for immediate
observation and into an output file name sensorTestOutput.dat for references. During the
test, the node will subscribe to the laser topic and record the range data. To test the laser sensor,
the user must set the key-value pair for the laser sensor to True in the input file. Then execute the

Date: 31/05/2025
Version: No 1.1

Page 18

http://doc.aldebaran.com/2-5/family/pepper_technical/sonar_pep.html#d-sonar-pepper

D4.1 Sensor Tests

sensorTest node to run the test. The laser sensor is capable of detecting objects within a range. Upon
receiving data, the test outputs a series of messages that detail:

Table 5: Laser Test Output Data.

Data Description
Frame ID An identifier for the sensor data frame, ensuring

that the data can be accurately correlated with its
source and time of capture.

Start and End Angles of the Scan The scan covers an angular range field of view
that is essential for comprehensive environmental
scanning and obstacle detection.

Angular Distance between Measurements This metric reflects the sensor’s angular resolu-
tion, determining the fineness of the scan and the
sensor’s ability to discern features.

Time between Measurements and Scans It indicates the time interval between consecutive
measurements and scans, influencing the sensor’s
ability to capture dynamic environmental changes.

Minimum and Maximum Range Values The sensor is capable of detecting objects within
a range defining the effective operational distance
for reliable data acquisition.

Range Data This array of range data points captures the dis-
tances measured across the sensor’s field of view,
offering a dense dataset for analysis.

For more technical details regarding the laser sensor, refer to the Pepper laser technical detail that
shows the frame rate, horizontal and vertical field of view, and the resolution of the laser sensor.

6.6 Microphone Test

The microphone test is designed to capture and play the audio data from the robot’s microphone. The
test will record the audio data as .wav file and play the audio data. For the test, the user can speak or
play a sound to the robot’s microphone which is located at the top of the robot’s head. The test will
record the audio data for the four microphones for 10 seconds each as .wav file and saves the audio
file in the data directory to do a system call to play the audio data. The user has the option to keep or
delete the audio data. If the user wants to keep the audio data, the user can set the deleteFile key
to False in the implementation file. Then compile the code and run the test. To test the microphone
sensor, the user must set the key-value pair for the microphone sensor to True in the input file. Then
execute the sensorTest node to run the test.

Note:

The test is only available for the physical robot. The audio starts recording from
the rearLeft microphone - rearRight microphone - frontLeft microphone - frontRight
microphone. Ensure that the volume for your computer is set to a reasonable level to
hear the audio recorded.

The pepper robot has four microphones located at the top of the robot’s head as shown in Figure
8.

Date: 31/05/2025
Version: No 1.1

Page 19

http://doc.aldebaran.com/2-5/family/pepper_technical/laser_pep.html#d-laser-pepper

D4.1 Sensor Tests

Figure 8: Pepper’s Microphone. Source: Aldebaran

Table 6: Pepper Microphone Part and Name.

Part Name
A MicroRL sensor
B MicroRR sensor
C MicroFL sensor
D MicroFR sensor

The custom message type naoqi driver/AudioCustomMsg records the audio data for the
four microphones. The message type will have four data fields for the audio data representing the four
microphones.

The microphones are crucial for Deliverable D4.2.3 (Sound Detection and Localization) and De-
liverable D4.3.2 (Speech Event) as it is used to perform automatic speech recognition.

For more technical details regarding the microphone sensor, refer to the Pepper microphone techni-
cal detail which outlines the location of the four microphones, the frequency range, and the sensitivity
of the microphones.

6.7 Joint State Test

The joint state test is designed to assess the functionality and accuracy of the joint state sensors by
subscribing to the joint state topic and recording the joint state data. The sensor test will record the
status of each joint, including the position, velocity, and effort. The test will output the joint state data
to the terminal and save the joint state data to the output data file named sensorTestOutput.dat.
To test the joint state sensor, the user must set the key-value pair for the joint state sensor to True in
the input file. Then execute the sensorTest node to run the test.

Date: 31/05/2025
Version: No 1.1

Page 20

http://doc.aldebaran.com/2-5/family/pepper_technical/microphone_pep.html
http://doc.aldebaran.com/2-5/family/pepper_technical/microphone_pep.html
http://doc.aldebaran.com/2-5/family/pepper_technical/microphone_pep.html

D4.1 Sensor Tests

Upon receiving data, the test outputs a series of messages that detail:

Table 7: Joint State Test Output Data.

Data Description
Name The name of the joint for which the data is recorded, providing a clear reference for

the specific joint being analyzed.
Position The current position of the joint, indicating the angle at which the joint is currently

positioned. The position is measured in radians.
Velocity The velocity of the joint, reflecting the rate at which the joint is moving. The velocity

is measured in radians per second.
Effort The effort exerted by the joint, representing the force or torque applied to the joint.

The effort is measured in Newton-meters.

6.8 Odometry Test

The odometry test is designed to assess the functionality and accuracy of the odometry sensor by
subscribing to the odometry topic and recording the odometry data. The sensor test will record the
odometry data, including the position, orientation, and linear and angular velocity. The test will
output the odometry data to the terminal and save the odometry data to the output data file named
sensorTestOutput.dat.

To test the odometry sensor, the user must set the key-value pair for the odometry sensor to True
in the input file. Then execute the sensorTest node to run the test.

Upon receiving data, the test outputs a series of messages that detail:

Table 8: Odometry Test Output Data.

Data Description
Timestamp The time at which the odometry data was recorded, providing a refer-

ence for the data’s temporal context.
Frame of Reference The frame in which the odometry data is reported, ensuring that the data

is accurately correlated with the robot’s position and orientation.
Child Frame ID The ID of the frame that is moving, typically the base frame of the robot.
Pose The robot’s position and orientation in the form of a pose message (ge-

ometry msgs/PoseWithCovariance), including both the pose and the co-
variance of the pose estimate.

Twist The robot’s velocity in both linear and angular terms (geome-
try msgs/TwistWithCovariance), including the velocity and the covari-
ance of the velocity estimate.

6.9 IMU Sensor Test

The IMU sensor test is designed to assess the functionality and accuracy of the gyroscope and ac-
celerometer sensors by subscribing to the IMU topic and recording the IMU data. The sensor test
will record the IMU data, including the linear acceleration, angular velocity, and orientation. The test
will output the IMU data to the terminal. Furthermore, you can observe the IMU sensor publishes the
data to two topics: /naoqi driver/imu/base and /naoqi driver/imu/torso. Both of
the topics publish the IMU sensor data from different frames of reference. For the test, the sensor test
will subscribe to the /naoqi driver/imu/base topic.

Date: 31/05/2025
Version: No 1.1

Page 21

D4.1 Sensor Tests

To test the IMU sensor, the user must set the key-value pair for the IMU sensor to True in the
input file. Then execute the sensorTest node to run the test.

The test will output the IMU data to the terminal. In addition, upon receiving data, the test outputs
a series of messages that detail:

Table 9: IMU Sensor Test Output Data.

Data Description
Orientation The sensor’s current orientation in space, provided as a quaternion (x,

y, z, w).
Angular Velocity The rate of rotation around the sensor’s x, y, and z axes, typically in

radians per second.
Linear Acceleration The acceleration vector along the sensor’s x, y, and z axes, excluding

gravity, usually in meters per second squared.
Covariance Matrices Estimates the noise and uncertainty of the orientation, angular velocity,

and linear acceleration measurements, crucial for algorithms that fuse
sensor data for more accurate state estimation.

For more technical details regarding the IMU sensor, refer to the Pepper IMU technical detail.

6.10 Speech Test

The speech test is designed to assess the functionality of speakers by publishing a speech command
to the robot. The test will publish the speech in the form of a string message to the speech topic. The
text input provided for the speaker is "This is the CSSR4Africa speaker test.".

To test the speech, the user must set the key-value pair for the speech to True in the input file.
Then execute the sensorTest node to run the test.

Note:
The test is only available for the physical robot. Ensure that the volume of the robot
is set to a reasonable level to hear the speech.

For more technical details regarding the speaker, refer to the Pepper speaker technical detail.

Date: 31/05/2025
Version: No 1.1

Page 22

http://doc.aldebaran.com/2-5/family/pepper_technical/inertial_pep.html#d-inertial-pepper
http://doc.aldebaran.com/2-5/family/pepper_technical/speaker_pep.html#d-speaker-pepper

D4.1 Sensor Tests

References

[1] Pepper technical specifications. http://doc.aldebaran.com/2-5/family/pepper_
technical/index_pep.html.

Date: 31/05/2025
Version: No 1.1

Page 23

http://doc.aldebaran.com/2-5/family/pepper_technical/index_pep.html
http://doc.aldebaran.com/2-5/family/pepper_technical/index_pep.html

D4.1 Sensor Tests

Principal Contributors

The main authors of this deliverable are as follows (in alphabetical order).

Yohannes Haile, Carnegie Mellon University Africa.
David Vernon, Carnegie Mellon University Africa.

Date: 31/05/2025
Version: No 1.1

Page 24

D4.1 Sensor Tests

Document History

Version 1.0
First draft.
Yohannes Haile.
26 March 2024.

Version 1.1
Fixed error changed actuator test to sensor test on Page 11.
Fixed repetition “All of the sensors ...” on Page 7.
Fixed the sensor test diagram flow chart.
Changed the title from Source Code → File Organization.
Added the real sense camera in the test.
Yohannes Haile.
31 May 2025.

Date: 31/05/2025
Version: No 1.1

Page 25

	Introduction
	Requirements Definition
	Module Specifications
	Interface Design
	Module Design
	Executing the Sensor Test
	Intel RealSense D435i Camera Test
	Bottom, Front, and Stereo Camera Test
	Depth Camera Test
	Front and Back Sonar Test
	Laser Test
	Microphone Test
	Joint State Test
	Odometry Test
	IMU Sensor Test
	Speech Test

	References
	Principal Contributors
	Document History

