
Culturally Sensitive Social Robotics
for Africa

D3.2 Software Engineering Standards Manual

Due date: 30/09/2023
Submission Date: 26/10/2023

Revision Date: 25/01/2024

Start date of project: 01/07/2023 Duration: 36 months

Lead organisation for this deliverable: Carnegie Mellon University Africa

Responsible Person: D. Vernon Revision: 1.7

Project funded by the African Engineering and Technology Network (Afretec)
Inclusive Digital Transformation Research Grant Programme

Dissemination Level
PU Public PU
PP Restricted to other programme participants (including Afretec Administration)
RE Restricted to a group specified by the consortium (including Afretec Administration)
CO Confidential, only for members of the consortium (including Afretec Administration)

D3.2 Software Engineering Standards Manual

Executive Summary

Deliverable D3.2 is a reference manual of software engineering standards. It is based on the software
engineering standards manual that was written for the EU-funded DREAM project [1], Deliverable
D3.2 [2], which was in turn based on the software engineering standards manual that was written for
the EU-funded RobotCub project [3]. The responsible person identified on the cover of the current
manual was also responsible for these two prior manuals.

The manual comprises three parts.
Part I sets out the general principles of component-based software engineering that guide the de-

cisions in Parts II and III.
Part II focusses on the software development environment that supports the development process:

the supported languages, operating systems, libraries, robot programming framework, and related
tools and utilities.

Part III then proceeds to address the standards associated with each phase of the software devel-
opment life-cycle, from component and sub-system specification, through component design, compo-
nent implementation, and component and sub-system testing, to documentation. Particular emphasis
is placed on the latter phases of the life-cycle — implementation, test, and documentation — because
these are particularly important for effective system integration and long-term support by third-party
software engineers and system users.

The material in Part II is partly the result of work done in Task 3.1 (System Architecture Design)
which deals with the design of the CSSR4Africa system architecture. On the other hand, the standards
set out in Part III are the outcome of preliminary work in Task 3.4 (Software Integration and Quality
Assurance Manual), which focusses on the procedures by which software developed in Africa is
submitted for integration, tested, and checked against the standards set out in Part III of this document.

In general, the standards defined here attempt to find a balance between specifying too much (with
the result that no one will use them) and specifying too little (with the result that the desired software
quality won’t be achieved and software integration will be hindered). The standards should be simple
enough to be easily adopted and applied, but comprehensive enough to be useful in the creation of
high-quality easily-maintained software. Furthermore, in this deliverable as in others, we have opted
to include only the essential information, targetting brevity rather than extensive discussion.

Date: 26/10/2023
Version: No 1.7

Page 2

D3.2 Software Engineering Standards Manual

Contents

I Guiding Principles 5

1 Objectives 5

2 Component-based Software Engineering 5
2.1 Background Material . 5
2.2 Characteristics of Component-Based Software Engineering 5
2.3 Component Granularity and Systems . 6
2.4 Component Interfaces . 7

3 Model-Driven Engineering and the Component-Port-Connector Model 7

4 Guidelines 9

II Software Development Environment 10

1 Programming languages and compilers 10

2 Operating Systems 10

3 Robot Programming Framework 10
3.1 Support for the Component-Port-Connector Meta-Model 11
3.2 Robot Applications . 11
3.3 Coarse-grained Functionality . 11
3.4 Multiple Instances of Components . 11
3.5 External Configuration . 11
3.6 Different Contexts . 12
3.7 Runtime Configuration . 12
3.8 Assignment of Resources . 12
3.9 Asynchronous Communication . 12
3.10 Distributed Computing . 12
3.11 Stable Interfaces . 12
3.12 Abstract Component Interfaces . 12
3.13 Multiple Transport Layer Protocols . 12
3.14 Graphic User Interface Tools . 12

4 Make File Utilities 13

5 Software Repository 13

III Standards 14

1 Component and Sub-system Specification 14

Date: 26/10/2023
Version: No 1.7

Page 3

D3.2 Software Engineering Standards Manual

2 Component Design 15

3 Component Implementation 15

4 Testing 15
4.1 Black-box Unit Tests . 15
4.2 System Tests . 16
4.3 Regression Tests . 16

5 Documentation 16

Appendix A Mandatory Standards for File Organization 18
A.1 Directory Structure . 18
A.2 Filename Roots and Extensions . 19
A.3 File Organization . 20

A.3.1 Source Files . 20
A.3.2 Launch Files . 21
A.3.3 Configuration Files . 22
A.3.4 Data Files . 22
A.3.5 Other Files . 22

Appendix B Mandatory Standards for Internal Source Code Documentation 23
B.1 General Guidelines . 23
B.2 Documentation Comments . 23
B.3 Implementation Comments . 24

Appendix C Recommended Standards for Programming Style 26
C.1 Indentation and Line Breaks . 26
C.2 Declarations . 26
C.3 Placement . 27
C.4 Statements . 27
C.5 Naming Conventions . 29
C.6 And Finally: Where To Put The Opening Brace { 30

Appendix D Recommended Standards for Programming Practice 32
D.1 C++ Language Conventions . 32
D.2 C Language Conventions . 32
D.3 General Issues . 32

References 37

Principal Contributors 38

Document History 39

Date: 26/10/2023
Version: No 1.7

Page 4

D3.2 Software Engineering Standards Manual

Part I

Guiding Principles
1 Objectives

The purpose of this deliverable is to define a set of project standards governing the specification, de-
sign, documentation, and testing of all software to be developed in work packages WP4 and WP5.
Specification standards address functional definition, data representation, and component & sub-
system behaviour. Design standards focus on the decoupling of functional computation, component
communication, external component configuration, and inter-component coordination [4]. Software
test strategies will include black-box unit testing, system testing on the basis of the required be-
haviours specified by the interaction scenarios defined in work package WP2, and regression testing
for to ensure backward compatibility.

To facilitate efficient implementation and reuse of robot software by application developers, the
CSSR4Africa project has decided to adopt the principles of a best-practice component-based software
engineering model, such as the BRICS Component Model (BCM) [5, 6, 7, 8]. The goal of Part I is
to identify the principles of component-based software engineering and provide a set of guidelines
that can then be used in setting the standards and defining the practices to be used by all software
developers in the project, i.e. the standards set out in Part III.

The principles of component-based software engineering have another important role in the project
in that they also guide the selection of a software environment that will be used to provide the abstrac-
tion layer between the application code to be developed in WP4 and WP5, on the one hand, and the
middleware and operating system services (including support of distributed systems processing and
device input/output), on the other. This abstraction layer is typically provided by the robot program-
ming framework, or robot platform, for short. It provides an abstract interface between the robot
software system (implemented as a network of components) and the underlying operating system and
middleware; see Fig. 1. This robot platform is identified in Part II, Section 3.

2 Component-based Software Engineering

2.1 Background Material

The following overview of component-based software engineering focusses on the issues that are
particularly important in robot programming. It is based in part on the tutorials by Davide Brugali,
Patrizia Scandura, and Azamat Shakhimardanov “Component-Based Robotic Engineering” [10, 11],
complemented by material on the BRICS Component Model by Herman Bruyninckx and colleagues
[8], and the paper by Christian Schlegel and colleagues on model-driven software development in
robotics [9], among other sources.

2.2 Characteristics of Component-Based Software Engineering

Targetting the development of reusable software, component-based sofware engineering (CBSE) com-
plements traditional object-oriented programming by focussing on run-time composition of software
rather than link-time composition. Consequently, it allows different programming languages, operat-
ing systems, and possibly communication middleware to be used in a given application. It harks back

Date: 26/10/2023
Version: No 1.7

Page 5

D3.2 Software Engineering Standards Manual

Figure 1: The relationship between the robot software system (implemented as a network of compo-
nents), the robot programming framework (or platform), and the underlying middleware and operating
system(s) (from [9]). The existence of stable interfaces is a key attribute of each level.

to the classic concept of communicating sequential processes (CSP) [12], the idea being that compo-
nents are individually-instantiated processes that communicate with each other by message-passing.
Typically, component models assume asynchronous message-passing where the communicating com-
ponent is non-blocking, whereas CSP assumed synchronous communication. The key idea is that
components can act as reusable building blocks and that applications, or system architectures, can be
designed by composing components.

This gives rise to the two key concerns of component-based models: composability and composi-
tionality. In complex robotics system, integration is difficult. It is made easier by adopting practices
that “make components more composable and systems more compositional” [7].

Thus, composability is the property of a component to be easily integrated into a larger system,
i.e., to be reused under composition, while compositionality is the property of a system to exhibit pre-
dictable performance and behaviour if the performance and behaviour of the components are known.

Unfortunately, it is not possible to maximize both properties simultaneously because the infor-
mation hiding characteristic inherent in good component design conflicts with the need for system
engineers to optimize system robustness by selecting components with the most resilient and flexible
internal design [7].

2.3 Component Granularity and Systems

The granularity of components is larger than that of objects in object-oriented approaches. Thus, the
functionality encapsulated in a component is typically greater than that of an object. Also, compo-
nents are explicitly intended to be stand-alone reusable pieces of software with well-defined public
interfaces.

In general, a component implements a well-encapulated element of robot functionality. Systems

Date: 26/10/2023
Version: No 1.7

Page 6

D3.2 Software Engineering Standards Manual

Figure 2: The four levels of abstraction from the OMG [13] applied in the BRICS Component Model
(from [8]).

are constructed by connecting components. The connections are made using ports in the components.
As we will see below, this gives rise to the so-called Component-Port-Connector model.

2.4 Component Interfaces

In component-based sofware engineering, as in object-oriented programming, the component spec-
ification is separated from the component implementation. A component exposes its functionality
through abstract interfaces that hide the underlying implementation. Thus, the implementation can
be altered without affecting any of the systems or other components that use (i.e., interface with) that
component. Components exchange data through their interface.

Interfaces can be classified as either data interfaces or service interfaces. Data interfaces expose
state information about the component and typically provide get / set operations for retrieving or set-
ting the values of attributes. These attributes will typically be specified as abstract properties (in order
to keep the implementation hidden). A service interface is a declaration of the set of functionalities
offered by a component on the parameters that are passed to it.

An interface can be either stateful or stateless. In a stateful interface, the invocation of an opera-
tion changes the component’s internal state and the information returned by the operation is computed
differently, depending on the component’s state. Thus the behaviour of the exposed operations de-
pends on the history of their previous invocations. In a stateless interface, the operations’s behaviour
is always the same and the outcome depends only of the information provided through the parame-
ters, i.e., the data exchanged through the interface. In a stateless interface, a client component has to
specify all the information related to its request for the invocation of some operation. Consequently, a
component with a stateless interface can interact with many different clients and client requests since
none of them can make any assumptions about the state of the component.

3 Model-Driven Engineering and the Component-Port-Connector Model

Model-Driven Engineering (MDE) aims to improve the process of code generation from abstract mod-
els that describe a domain. The Object Management Group (OMG) [13] defines four levels of model

Date: 26/10/2023
Version: No 1.7

Page 7

D3.2 Software Engineering Standards Manual

Figure 3: A UML diagram representing the Component-Port-Connector meta-model (from [8]).

abstraction, going from higher to lower levels of domain specificity, i.e., from platform-independent
to platform-specific, by adding platform knowledge. These four levels can be characterized as follows
[8] (see also Fig. 2).

M3 Domain-nonspecific: the highest level of abstraction using a meta-meta-model.
M2 Platform-independent representation of a domain: uses a Component-Port-Connector (CPC)

meta-model.
M1 Platform-specific model: a concrete model of a specific robotic system but without using a spe-

cific programming language.
M0 The implementation level of a specific robotic system, with defined software frameworks, li-

braries, and programming languages.

Of particular interest here is level M2 because the abstract model, i.e. the Component-Port-Connector
(CPC) meta-model, maps directly to the concepts of component-based software engineering. Figure
3 shows a UML diagram representing the CPC meta-model. The essence of this model is as follows.

• An application system has zero or more components and zero or more connectors.

• A component has zero or more ports.

• A port belongs to one and only one component.

• A connector is always between two ports.

• Components expose their data and service interfaces on their ports and exchange data over the
attached connectors.

We are now in a position to identify the guidelines for selecting an appropriate robot program-
ming framework and setting standards for the development component-based software centred on
the Component-Port-Connector meta model and model-driven engineering.

Date: 26/10/2023
Version: No 1.7

Page 8

D3.2 Software Engineering Standards Manual

4 Guidelines

The principles of CBSE and Level 2 of MDE can be encapsulated in the following guidelines. These
guidelines provide the basis for the choice of robot programming framework and the software devel-
opment standards in Parts II and III.

1. The software engingeering methodology, in general, and the robot programming framework,
in particular, should support the component-port-connector meta-model, the principles of
component-based software engineering, and the principles of model-driven engineering.

2. The robot application should be implemented by identifying the components to be instantiated
and specifying the connections between their port interfaces.

3. Each component should encapsulate some coarse-grained robot functionality (i.e. the compo-
nent should perform some substanial function while maintaining its cohesion and not doing too
many disparate things).

4. It should be possible to have multiple instances of the same component (this requires a mech-
anism for uniquely naming each instance of the component and propagating that name to the
component’s port names).

5. There should be a facility for external configuration of the behaviour of the component (this
allows the behaviour of individual instances of a component to be customized by the application
developer without recourse to the component developer).

6. There should be a facility to allow components to run in different contexts (in essence, this
means that the robot programming framework should allow the component user to specify the
location of the components configuration files and other resources).

7. There should be a facility for runtime configuration of the behaviour of the component (this
allows users and other components to control the component’s processing, if necessary).

8. Configuration should provide explicit assignment of resources to the component, where nec-
essary.

9. Components should be able to run and communicate asynchronously.

10. It must be possible to run components on a distributed system (this requires a mechanism to
assign a component to a given compute-server).

11. Components should have stable interfaces (this implies, among other things, that backward
compatibility should be assured).

12. The robot programming framework should provide facilities to support abstract component
interfaces (in effect, this will mean that there is support for high-level communication using
ports).

13. There should be flexible communication infrastructure with multiple transport layer protocols
(this means in effect that the ports can be configured to use different communication protocols,
e.g. udp, tcp, and mcast).

14. The robot programming framework should provide graphic user interface tools for managing
the execution of robot applications.

Date: 26/10/2023
Version: No 1.7

Page 9

D3.2 Software Engineering Standards Manual

Part II

Software Development Environment
In this part, we will identify the six constituents of the CSSR4Africa software development environ-
ment:

1. Programming languages and compilers;
2. Operating systems;
3. Robot programming framework;
4. Make file utilities;
5. Software libraries
6. Software repository.

The choice of robot programming framework is based directly on the fourteen guidelines set out in the
previous section. Following all guidelines is the ideal. The need to make choices based on existing
competences shared by all partners in the consortium may preclude following some guidelines.

A complete set of instructions on how to download and install all the various utilities, libraries, and
tools comprising the CSSR4Africa software development environment will be provided in Deliverable
D3.2 Software Installation Manual.

1 Programming languages and compilers

CSSR4Africa software should be written in either the C language, the C++ language, or, where nec-
essary, Python.

2 Operating Systems

Software will be developed for Ubuntu 18.04.

3 Robot Programming Framework

There are many robot programming frameworks. These include ROS [14], YARP [15], URBI [16],
and Orca [17, 18]. All have their respective advantages and disadvantages, as explained in various
surveys and comparisons [19, 20].

Our goal is to select one that will allow the software required to deliver the CSSR4Africa s func-
tionality to be developed efficiently and effectively, bearing in mind constraints of shared partner com-
petences. As we have already stated, we have adopted the principles of component-based software
engineering (CBSE) and fourteen guidelines on the required attributes of a good CBSE framework
have been identified in Part I.

Having considered the various options, we decided to adopt ROS [21] as the framework for
CSSR4Africa. ROS is a popular choice in many projects, despite having been criticized in the con-
text of Component Based Software Engineering for lacking an abstract component model [9]. It has
the distinct advantage that both partners in the CSSR4Africa consortium have adopted ROS for their
research and teaching in robotics.

Date: 26/10/2023
Version: No 1.7

Page 10

D3.2 Software Engineering Standards Manual

In the following, we use the terms component and node interchangeably. In general, we use com-
ponent when referring to the abstract CBSE view of the entity and node when referring to the ROS
implementation of a component. Similarly, we use the terms port and publisher/subscriber/service/ac-
tion interchangeably, the former when referring to the abstract CBSE view of the entity and latter when
referring to the ROS implementation. Finally, we use the terms connector (CBSE) and topic (ROS)
interchangeably. Messages are exchanged by publishers and subscribers using ROS topics. Since
communication on ROS topics is non-blocking and open-loop, i.e., a broadcast form of communi-
cation between ROS nodes, ROS provides a blocking mechanism, called a service that provides a
two-way communication between nodes. ROS also provides a client-server mechanism, called an ac-
tion, that allows status information to be provided by a server node to a client node while the requested
operation is being carried out.

We now address the extent to which ROS adheres to the fourteen CBSE guidelines in Part I, Section
4.

3.1 Support for the Component-Port-Connector Meta-Model

ROS supports the component-port-connector meta-model as well as the principles of component-
based software engineering and the principles of model-driven engineering. Specifically, a ROS node
corresponds to a component and it can have an arbitrary number of publishers and subscribers (ports)
communicating using topics (connectors).

3.2 Robot Applications

ROS supports the implementation of robot applications by identifying the components (nodes) to be
instantiated and specifying the connections (topics) between their port interfaces, i.e, using publishers
and subscribers (or, possibly, services and actions).

3.3 Coarse-grained Functionality

ROS support the encapsulation of coarse-grained robot functionality insofar as the scope of the func-
tionality in a ROS node is under the control of the component developer.

3.4 Multiple Instances of Components

ROS supports the instantiation of multiple instances of the same component (node). This is achieved
using a __name key when running or launching the node. ROS also allows topic names to be
remapped.

3.5 External Configuration

It is accepted best practice in software engineering to ensure that the behaviour of a component can
be configured externally, without having to change and recompile the code. ROS does not have
specific tools to effect this, so we will simply adopt the practice of supporting external configuration
of the behaviour of the component through the use of .ini configuration files, comprising a set
of one or more key-value parameters, e.g., threshold <value>. This allows the behaviour of
individual instances of a component to be customized by the application developer without recourse
to the component developer. It is the responsibility of the component developer to expose all these
parameters to the user.

Date: 26/10/2023
Version: No 1.7

Page 11

D3.2 Software Engineering Standards Manual

3.6 Different Contexts

ROS provides a facility to allow components to run in different workspaces.

3.7 Runtime Configuration

ROS does not provide tools to support runtime configuration. If this is required, it can be effected by
periodically invoking the function or method that reads the node configuration file, re-initializing the
parameter values accordingly at runtime.

3.8 Assignment of Resources

The guidelines state that a CBSE-based robot programming framework should provide explicit assign-
ment of resources to the component, where necessary. Again, ROS does not provide tools to support
this but such functionality can be accomplished through the configuration file.

3.9 Asynchronous Communication

All ROS nodes run and communicate asynchronously.

3.10 Distributed Computing

ROS supports distributed computing. It is possible to run components on a network of computers, be
it a distributed system, a collection of PCs, or a server farm. Specifically, YARP allows an application
developer (not just a component developer) to assign a component to a given compute-server.

3.11 Stable Interfaces

This guideline states that components should have stable interfaces. This can be ensured by enforcing
backward compatability in the development of new code and the modification of legacy code.

3.12 Abstract Component Interfaces

The robot programming framework should provide facilities to support abstract component interfaces.
As noted above, this effectively means that there is support for high-level communication using ports.
Again, this is the very essence of ROS, for which publishers, subscribers, services, and actions are
central to inter-node communication.

3.13 Multiple Transport Layer Protocols

ROS supports a flexible communication infrastructure with multiple transport layer protocols so that
the topics can be configured to use different communication protocols, specifically TCPROS and
UDPROS.

3.14 Graphic User Interface Tools

ROS uses the rqt metapackage. This is a Qt-based framework for GUI development for ROS.

Date: 26/10/2023
Version: No 1.7

Page 12

D3.2 Software Engineering Standards Manual

4 Make File Utilities

ROS uses catkin to manage and build packages, i.e., collections of nodes. catkin uses CMake to
provide the build functionality.

5 Software Repository

The release version of all CSSR4Africa software will be uploaded to the CSSR4Africa repository on
GitHub https://github.com/cssr4africa/cssr4africa. Software will only be uploaded
after it has passed the integration checks set out in Deliverable D3.4 System Integration and Quality
Assurance Manual. These checks enforce adherence to the mandatory standards in Appendix A and
Appendix B of this deliverable.

Date: 26/10/2023
Version: No 1.7

Page 13

D3.2 Software Engineering Standards Manual

Part III

Standards
This part of the document defines the project’s standards governing the specification, design, docu-
mentation, and testing of all software to be developed in work-packages WP4 and WP5. Particular
emphasis is placed on the latter phases of the life cycle — implementation, testing, and documentation
— because these are particularly important for effective system integration and long-term support by
third-party software engineers and system users.

We distinguish between recommended standards that reflect desirable practices and mandatory
standards that reflect required practices. CSSR4Africa component software developers and robot
application developers are stongly encouraged to adhere to the desirable practices but these standards
do not form part of the checks that will be used to decide whether or not a given component of
application can be included in the CSSR4Africa software repository, as set out in the CSSR4Africa
software quality assurance process described in Deliverable D3.4. On the other hand, the required
practices do form part of the software quality assurance process and a component or application will
only be accepted for integration in the release version of the CSSR4Africa software if it complies with
the corresponding mandatory standards.

In creating the standards set out in this part, we have drawn from several sources. These include
the GNU Coding Standards [22], Java Code Conventions [23], C++ Coding Standard [24], and the
EPFL BIRG Coding Standards [25].

1 Component and Sub-system Specification

The CSSR4Africa project aims to allow researchers and software developers as much freedom as
possible in the specification of the components that meet the functional requirements for the culturally
sensitive social robotics scenario set out in deliverables D2.2 and D2.3. Consequently, this phase of
the software development life-cycle are subject to following recommended standards.

Requirements
Requirements should be derived from deliverables D2.2 and D2.3 and exemplified by use cases.

Computational model
Any underlying computational model should be clearly documented.

Functional model
A functional specification should be documented, together with a functional decomposition into
smaller functional units. If an object-oriented approach is being used, then the functional model
should include a class and class-hierarchy definition.

Data model
The data model should be described with an entity-relationship diagram. A data dictionary
should be produced, identifying the input functional, control, system configuration data, output
functional, control, system configuration data for each process or thread in the component. If an
object-oriented approach is being used, then an object-relationship model should be included.

Process flow model
A process flow model should be produced, e.g., a data-flow diagram (DFD), identifying data
flow, control flow, and persistent data sources and sinks.

Date: 26/10/2023
Version: No 1.7

Page 14

D3.2 Software Engineering Standards Manual

Behavioural model
A behavioural model should be produced, e.g., a state transition diagram. If an object-oriented
approach is being used, then an object-behaviour model should be included.

2 Component Design

The principles of good design have already been addressed at length in Part I, in general, and in
the guidelines set out in Part I, Section 4, in particular. We consider these guidelines to be a set
of recommended standards for component design and we will not repeat them here. However, it
is important to note that these guidelines give rise to several essential practices — and mandatory
standards — in component implementation. We return to these in the next section.

3 Component Implementation

Some implementation standards are mandatory, others are recommended. The mandatory standards
for implementation of components form part of the software quality assurance process and the com-
ponent will only be accepted for integration in the release version of the CSSR4Africa software if it
complies with these standards.

The mandatory implementation standards include the following.

1. Mandatory standards for file names and file organization (Appendix A).

2. Mandatory standards for internal source code documentation (Appendix B).

The recommended implementation standards include the following.

1. Recommended standards for programming style (Appendix C).

2. Recommended standards on programming practice (Appendix D).

4 Testing

CSSR4Africa software will be subject to a spectrum of test procedures, including black-box unit tests,
system tests, and regression tests.

4.1 Black-box Unit Tests

Black-box testing is a testing strategy that checks the behaviour of a software unit — in this case a
component — without being concerned with what is going on inside the unit; hence the term “black-
box”. Typically, it does this by providing a representative sample of input data (both valid and in-
valid), by describing the expected results, and then by running the component against this test data to
see whether or not the expected results are achieved.

Component software developers must provide up to three unit tests with every component submitted
for integration into the CSSR4Africa release. These tests comprises a launch file and a test descrip-
tion. Both should be located in the launch directory (see Appendix A). The three tests are either the

Date: 26/10/2023
Version: No 1.7

Page 15

D3.2 Software Engineering Standards Manual

physical robot, the simulator, or a driver/stub test harness.

The launch files should launch the node being tested and, depending on which test is being run,
the physical robot, the simulator, or a driver node to source (publish) test data, and a stub node to sink
(subscribe to) the output of the node being tested.

The launch files should be named after the component but with the filename extension .launch.
For example: exampleComponentLaunchRobot.launch,
exampleComponentLaunchSimulator.launch, and
exampleComponentLaunchTestHarness.launch.

Instructions on how to run the tests should be included in a README.md file, also located in the
launch directory (see Appendix A). In general, these instructions should describe the nature of the
test data and the expected results, and it should explain how these results validate the expected be-
haviour of the component.

4.2 System Tests

A set of system tests will launch a subset of the components (nodes) in the system architecture to
check that they provide the required functionality. The final two system tests will lauch the entire
system and run the two user interaction scenarios.

4.3 Regression Tests

Regression testing refers to the practice of re-running all tests periodically to ensure that no uninten-
tional changes has been introduced during the ongoing development of the CSSR4Africa software
release. These tests check for backward compatability, ensuring that what used to work in the past
still works now. Regression tests will be carried out on all software in the CSSR4Africa release every
three months.

5 Documentation

The primary vehicle for documentation will be the CSSR4Africa wiki. It will have sections dealing
with the following five issues.

1. Software installation guide.

2. Software development guide (based on this deliverable, i.e., Deliverable D3.3).

3. Software integration guide (based on Deliverable D3.4).

4. Component reference manual.

The software installation guide will provide a step-by-step guide to downloading, installing, and
checking the software required to develop CSSR4Africa software and run CSSR4Africa robot ap-
plications. It will derived from Deliverable D3.3.

Date: 26/10/2023
Version: No 1.7

Page 16

D3.2 Software Engineering Standards Manual

The software development guide will be derived directly from the relevant sections of this deliver-
able (D3.2), addressing the development of component software and robot applications.

The software integration guide will describe the procedures for unit testing of individual compo-
nents and submitting them for integration. This guide will be derived from Part III, Section 4 of this
deliverable, from Deliverable D3.4, and augmented with more detailed instructions whereever they
are needed.

The component reference manual will be derived from the contents of the node README.md file
(see Appendix A, Section A.3) and the first documentation comment in the node application file (see
Appendix B, Section B.2).

For easy reference, the wiki will also include copies of the standards described in this deliverable.

1. Mandatory Standards for File Organization

2. Mandatory Standards for Internal Documentation

3. Recommended Standards for Programming Style

4. Recommended Standards for Programming Practice

The mandatory standards are contained in Appendices A and B, (File Organization and Internal Doc-
umentation, respectively), as well as Section 4 on Testing. The recommended standards are contained
in Appendices C and D (Programming Style and Programming Practice, respectively).

Date: 26/10/2023
Version: No 1.7

Page 17

D3.2 Software Engineering Standards Manual

Appendix A Mandatory Standards for File Organization

A.1 Directory Structure

CSSR4Africa software adheres to the standard ROS directory structure for a ROS workspace. There
are, in fact, two CSSR4Africa ROS workspaces, one for the physical Pepper robot (pepper_rob_ws)
and one for the simulator (pepper_sim_ws). The directory structure is identical, as shown in Fig. 4
for the pepper_rob_ws workspace.

workspace

pepper rob ws

build

devel

src

cssr4africa

cssr system

pepper interface tests

system tests

unit tests

naoqi dcm driver

naoqi driver

pepper dcm robot

pepper moveit config

pepper robot

pepper virtual

Figure 4: Directory structure for the CSSR4Africa software repository.

The cssr4africa directory is a ROS metapackage which collects together the ten ROS packages
that make up the CSSR4Africa system. Six of these are CSSR4Africa system architecture packages
and four are auxilliary packages, as shown in Table 1.

Each package has a similar directory structure. For example, see the directory structure for
pepper_interface_tests in Fig. 5. In this case, there are two ROS nodes: actuatorTest and
sensorTest. Eventually, the six system architecture packages will be populated with the compo-
nents (nodes) specified in the CSSR4Africa work plan, augmented by any other components that are
identified when designing the system architecture in Task 3.1.

Date: 26/10/2023
Version: No 1.7

Page 18

D3.2 Software Engineering Standards Manual

System Architecture Packages
Architecture Subsystem Package Name
Animate Behaviour cssr_system

Attention cssr_system

Gesture, Speech, & Navigation cssr_system

Detection of Interaction Events cssr_system

Interaction Manager cssr_system

Sensing & Analysis cssr_system

Test Packages
Test Type Package Name
Sensor and Actuator Tests pepper_interface_tests

System Tests system_tests

Unit Tests unit_tests

Table 1: The ROS packages that comprise the CSSR4Africa software system.

A.2 Filename Roots and Extensions

All files should have the same root, reflecting computational purpose of the component,
e.g., exampleComponent. Other filenames are derived from this by appending the appropriate string
to denote the files function. For example, a exampleComponent node would have the following files.
These are explained in the following sections.

• exampleComponentApplication.

• exampleComponentImplementation.

• exampleComponentInterface.

• exampleComponentConfiguration.

• exampleComponentInput.

• exampleComponentOutput.

• exampleComponentDriver.

• exampleComponentStub.

• exampleComponentLaunchRobot.

• exampleComponentLaunchSimulator.

• exampleComponentLaunchTestHarness.

Source code files for C and C++ should use a .c and .cpp extension, respectively.

Header files should have a .h extension in both cases.

Date: 26/10/2023
Version: No 1.7

Page 19

D3.2 Software Engineering Standards Manual

pepper interface tests

config

actuatorTestConfiguration.ini

sensorTestConfiguration.ini

data

pepperTopics.dat

simulatorTopics.dat

sensorTestOutput.dat

actuatorTestInput.dat

sensorTestInput.dat

include

pepper interface tests

actuatorTestInterface.h

sensorTestInterface.h

launch

actuatorTestLaunchRobot.launch

sensorTestLaunchRobot.launch

interfaceTestLaunchSimulator.launch

src

actuatorTestApplication.cpp

actuatorTestImplementation.cpp

sensorTestApplication.cpp

sensorTestImplementation.cpp

README.md

CMakeLists.txt

package.xml

Figure 5: Directory structure for the pepper_interface_tests package. There are two nodes:
actuatorTest and sensorTest.

A.3 File Organization

A.3.1 Source Files

The preferred practice for software that supports encapsulation and data hiding, as, arguably, all soft-
ware should, is for there to be three types of source file, as follows.

1. Application files.

2. Implementation files.

3. Interface files.

The basis for this approach is that application developers should not need to know about the imple-
mentation of the classes, methods, functions, and data structures that they are using. This allows the
implementation to be changed without affecting the application.

Thus, the application file, e.g., exampleComponentApplication.cpp, contains the main() func-
tion and the code that instantiates the classes, methods, functions, and data structures to effect the

Date: 26/10/2023
Version: No 1.7

Page 20

D3.2 Software Engineering Standards Manual

required functionality for the application in question.
The implementation file, e.g., exampleComponentImplementation.cpp, contains the definitions
of the classes, methods, functions, and data structures that implement the algorithms used in the im-
plementation. Ideally, to facilitate reuse, the implementation should be quite general.

The interface file, e.g., exampleComponentInterface.h, contains the declarations required to use
the classes, methods, functions, and data structures that implement the solution to this problem. Thus,
the interface file must furnish all the necessary information to use these classes, methods, functions,
and data structures.

The application and implementation files #include the exampleComponentInterface.h file.

In the particular case of CSSR4Africa software, the application file contains the code that instantiates
the ROS node along with any required classes, reads the .ini configuration file to set the parameter
values that govern the behaviour of the node, and calls the functions (C) or invokes the methods (C++)
that provide the required functionality.

The implementation file contains the source code for the implementation of each class method (C++)
or the source code of each function (C). General purpose functions might eventually be placed in a
library.

The interface file is a header file with the class declarations and method declarations but no method
implementations (C++) or the function implementations (C).

The application and implementation files should be placed in the src directory, and the interface
file in the node subdirectory in the include directory; see Fig. 5. Source files for any driver or stub
nodes associated with the unit test , e.g., exampleComponentDriver.cpp and
exampleComponentStub.cpp should also be placed in the src directory.

A.3.2 Launch Files

The launch directory should contain up to three launch files, one for use with the physical robot,
one for use with the simulator, and one for use with the driver and stub test harness. They should be
named after the component but with a .launch filename extension. For example
exampleComponentLaunchRobot.launch, exampleComponentLaunchSimulator.launch,
and exampleComponentLaunchTestHarness.launch.

These launch files are in effect the component unit tests and will be used to validate that the component
works correctly and will be used to test the component when it is being submitted for integration, and
subsequently transferred to the unit_tests package. As such, they should instantiate any necessary
driver or stub nodes, the simulator, or the Pepper robot drivers. Instructions on how to run the tests
should be included in a README.md file in the same directory.

Date: 26/10/2023
Version: No 1.7

Page 21

D3.2 Software Engineering Standards Manual

A.3.3 Configuration Files

Each component must have an associated configuration file, named after the component,
e.g exampleComponentConfiguration.ini . It is placed in the config directory.

The configuration file contains the key-value pairs that set the component parameters. For readability,
each key-value pair should be written on a separate line.

A.3.4 Data Files

A component may have an associated input or output data files. This should be named after the com-
ponent, appended with either Input or Output, and have either a .dat or .xml filename extension,
e.g., exampleComponentInput.dat. These files are placed in the data directory.

A.3.5 Other Files

Three other files are stored in the package directory, as follows.

1. README.md

2. CMakeLists.txt

3. package.xml

The README.md file provides information about the package in a Markdown markup language. It
should describe each node in the package and explain how to use them. The content will be based on
the documentation provided with nodes when they are submitted for integration and inclusion in the
release of CSSR4Africa repository on GitHub.

The CMakeLists.txt file contains the build directives for each node in the package. It will be
based on the CMakeLists.txt that are provided with nodes when they are submitted for integration and
inclusion in the release of CSSR4Africa repository on GitHub.

The package.xml file contains the package manifest. This defines details about the package, such
as the name, version, maintainer, and dependencies.

Date: 26/10/2023
Version: No 1.7

Page 22

D3.2 Software Engineering Standards Manual

Appendix B Mandatory Standards for Internal Source Code Documen-
tation

B.1 General Guidelines

Two types of comments are required: documentation comments and implementation comments. Doc-
umentation comments describe the functionality of a component from an implementation-free per-
spective. Together with the contents of the node README.md file, they will be used to create the
documentation in the component reference manual on the CSSR4Africa wiki. They are intended to be
read by developers who won’t necessarily have the source code at hand. Thus, documentation com-
ments help a developer understand how to use the component through its application programming
interface (API), e.g, the ROS topics, services, and actions it uses to communicate with other ROS
nodes, rather than understand its implementation. Implementation comments explain or clarify some
aspect of the code. They should be used to give overviews of code and provide additional information
that is not readily available in the code itself. Comments should contain only information that is rele-
vant to reading and understanding the program.

Documentation comments are delimited by /* ... */.

Implementation comments are delimited by /* ... */ and //.

All comments should be written in English.

B.2 Documentation Comments
The First Documentation Comment
All source files must begin with a documentation comment that identifies the file being documented,
and gives a copyright notice, as follows.

/* <filename> <one line to identify the nature of the file>

*
* Author:

* Date:

* Version:

*
* Copyright (C) 2023 CSSR4Africa Consortium

*
* This project is funded by the African Engineering and Technology Network (Afretec)

* Inclusive Digital Transformation Research Grant Programme.

*
* Website: www.cssr4africa.org

*
* This program comes with ABSOLUTELY NO WARRANTY.

*/

The <componentName>Application.cpp file must also contain additional information, docu-
menting the component API. The following is a list of the mandatory sections for which documenta-
tion comments must be provided.

Date: 26/10/2023
Version: No 1.7

Page 23

D3.2 Software Engineering Standards Manual

/* <componentName>Application.cpp <one line to identify the nature of the file>

*
* <detailed functional description>

*
...

* Libraries
...

* Parameters

*
* Command-line Parameters
...

* Configuration File Parameters
...

* Subscribed Topics and Message Types
...

* Published Topics and Message Types
...

* Input Data Files

*
* <componentName>Input.dat
...

* Output Data Files

*
* <componentName>Output.dat
...

* Configuration Files

*
* <componentName>Configuration.ini
...

* Example Instantiation of the Module

*
* rosrun <componentName> __name:=<alternativeComponentName> ...
...

*
* Author: <name of author>, <author institute>

* Email: <preferred email address>

* Date:

* Version:

*
*/

B.3 Implementation Comments
Programs can have four styles of implementation comments: block, single-line, trailing, and end-of-
line.

Block Comments
Block comments are used to provide descriptions of files, methods, data structures, and algorithms.
Block comments may be used at the beginning of each file and before each method. They can also be
used in other places, such as within methods. Block comments inside a function or method should be
indented to the same level as the code they describe.

A block comment should be preceded by a blank line to set it apart from the rest of the code.

Date: 26/10/2023
Version: No 1.7

Page 24

D3.2 Software Engineering Standards Manual

/*
* Here is a block comment.

*/

Single-Line Comments
Short comments can appear on a single line indented to the level of the code that follows. If a comment
can’t be written in a single line, it should follow the block comment format.

if (condition) {

/* Handle the condition. */

...
}

Trailing Comments
Very short comments can appear on the same line as the code they describe, but should be shifted far
enough to separate them from the statements. If more than one short comment appears in a segment
of code, they should all be indented to the same level.

if (a == b) {
return TRUE; /* special case */

}
else {

return general_answer(a); /* only works if a != b */
}

End-Of-Line Comments
The // comment delimiter can comment out a complete line or only a partial line. It shouldn’t be used
on consecutive multiple lines for text comments. However, it can be used in consecutive multiple lines
for commenting out sections of code. Examples of all three styles follow.

if (foo > 1) {

// look left
...

}
else {

return false; // need to explain why
}

//if (foo > 1) {
//
// // look left
// ...
//}
//else {
// return false; // need to explain why
//}

Date: 26/10/2023
Version: No 1.7

Page 25

D3.2 Software Engineering Standards Manual

Appendix C Recommended Standards for Programming Style

C.1 Indentation and Line Breaks

Either three or four spaces should be used as the unit of indentation. Choose one standard and stick to
it throughout the code.

Do not use tabs to indent text.

Avoid lines longer than 80 characters, since they are not handled well by many terminals and tools.

When an expression will not fit on a single line, break it according to the following general prin-
ciples.

• Break after a comma.

• Break before an operator.

• Align the new line with the beginning of the expression at the same level on the previous line.

For example, consider the following statements.

longName1 = longName2 * (longName3 + longName4 - longName5)
+ 4 * longName6; // Good break

longName1 = longName2 * (longName3 + longName4
- longName5) + 4 * longName6; // bad break: avoid

C.2 Declarations
Number Per Line
One declaration per line is recommended since it encourages commenting:

int level; // indentation level
int size; // size of table

is preferable to:

int level, size;

Do not put different types on the same line:

int foo, fooarray[]; //WRONG!

Initialization
Initialize local variables where they are declared. The only reason not to initialize a variable where
it’s declared is if the initial value depends on some computation occurring first.

Date: 26/10/2023
Version: No 1.7

Page 26

D3.2 Software Engineering Standards Manual

C.3 Placement
Put declarations only at the beginning of blocks. A block is any code surrounded by curly braces {
and }. Don’t wait to declare variables until their first use. Ideally, declare all variables at the beginning
of the method or function block.

void myMethod() {
int int1 = 0; // beginning of method block

if (condition) {
int int2 = 0; // beginning of "if" block
...

}
}

Class Declarations
The following formatting rules should be followed:

• No space between a method name and the parenthesis (starting its parameter list.

• The open brace { appears at the end of the same line as the declaration statement.

• The closing brace } starts a line by itself indented to match its corresponding opening statement.

class Sample {
...

}

• Methods are separated by a blank line.

C.4 Statements
Simple Statements
Each line should contain at most one statement. For example:

argv++; // Correct
argc++; // Correct
argv++; argc--; // AVOID!

Compound Statements
Compound statements are statements that contain lists of statements enclosed in braces { statements }.
See the following sections for examples.

• The enclosed statements should be indented one more level than the compound statement.

• The opening brace should be at the end of the line that begins the compound statement; the
closing brace should begin a line and be indented to the beginning of the compound statement.

• Braces are used around all statements, even single statements, when they are part of a control
structure, such as a if-else or for statement. This makes it easier to add statements without
accidentally introducing bugs due to forgetting to add braces.

Date: 26/10/2023
Version: No 1.7

Page 27

D3.2 Software Engineering Standards Manual

if (condition) {
a = b;

}
else {

a = c;
}

return Statements
A return statement with a value should not use parentheses unless they make the return value more
obvious in some way. For example:

return;

return myDisk.size();

return TRUE;

if, if-else, if else-if else Statements
The if-else class of statements should have the following form:

if (condition) {
statements;

}

if (condition) {
statements;

} else {
statements;

}

if (condition) {
statements;

} else if (condition) {
statements;

} else {
statements;

}

Always use braces { }, with if statements. Don’t use

if (condition) //AVOID!
statement;

for Statements
A for statement should have the following form:

for (initialization; condition; update) {
statements;

}

Date: 26/10/2023
Version: No 1.7

Page 28

D3.2 Software Engineering Standards Manual

while Statements
A while statement should have the following form:

while (condition) {
statements;

}

do-while Statements
A do-while statement should have the following form:

do {
statements;

} while (condition);

switch Statements
A switch statement should have the following form:

switch (condition) {
case ABC:

statements;
/* falls through */

case DEF:
statements;
break;

case XYZ:
statements;
break;

default:
statements;
break;

}

Every time a case falls through (i.e. when it doesn’t include a break statement), add a comment
where the break statement would normally be. This is shown in the preceding code example with the
/* falls through */ comment.

Every switch statement should include a default case. The break in the default case is redundant,
but it prevents a fall-through error if later another case is added.

C.5 Naming Conventions

C vs. C++
Naming conventions make programs more understandable by making them easier to read. Since
CSSR4Africa software uses both the C language and the C++ language, sometimes using the imper-
ative programming and object-oriented programming paradigms separately, sometimes using them
together, we will adopt two different naming conventions, one for C and the other for C++. The nam-
ing conventions for C++ are derived from the JavaDoc standards [23].

Date: 26/10/2023
Version: No 1.7

Page 29

D3.2 Software Engineering Standards Manual

C++ Language Conventions
The following are the naming conventions for identifiers when using C++ and the object-oriented
paradigm.

Identifier Type Rules for Naming Examples
Classes Class names should be nouns, in mixed case with class ImageDisplay

the first letter of each internal word capitalized class MotorController

Methods Method names should be verbs, in mixed case with int grabImage()
the first letter in lowercase, with the first int setVelocity()
letter of each internal word capitalized

Variables variable names should be in mixed case with the int i;
first letter in lowercase, with the first letter float f;
of each internal word capitalized double pixelValue;

Constants The names of variables declared as constants const int WIDTH = 4;
should be all uppercase with words separated by
underscores _

Type Names Typedef names should use the same naming policy as typedef uint16 ComponentType
that used for class names

Enum Names Enum names should use the same naming policy as enum PinState {
that used for class names. PIN_OFF,
Enum labels should should be all uppercase with PIN_ON
words separated by underscores _ };

C Language Conventions
The following are the naming conventions for identifies when using C and the imperative program-
ming paradigm.

Identifier Type Rules for Naming Examples
Functions Function names should be all lowercase with words int display_image()

separated by underscores _ void set_motor_control()

Variables variable names should be all lowercase with words int i;
separated by underscores _ float f;
of each internal word capitalized double pixel_value;

Constants Constants should be all uppercase with words #define WIDTH 4
separated by underscores _

#define #define and macro names should all uppercase #define SUB(a,b) ((a) - (b))
and Macros with words separated by underscores _

C.6 And Finally: Where To Put The Opening Brace {
There are two main conventions on where to put the opening brace of a block. In this document, we
have adopted the JavaDoc convention and put the brace on the same line as the statement preceding
the block. For example:

Date: 26/10/2023
Version: No 1.7

Page 30

D3.2 Software Engineering Standards Manual

class Sample {
...

}

while (condition) {
statements;

}

The second convention is to place the brace on the line below the statement preceding the block and
it indent it to the same level. For example:

class Sample
{

...
}

while (condition)
{

statements;
}

If you really hate the JavaDoc format, use the second format, but be consistent and stick to it through-
out your code.

Date: 26/10/2023
Version: No 1.7

Page 31

D3.2 Software Engineering Standards Manual

Appendix D Recommended Standards for Programming Practice

D.1 C++ Language Conventions

Access to Data Members
Don’t make any class data member public without good reason.

One example of appropriate public data member is the case where the class is essentially a data
structure, with no behaviour. In other words, if you would have used a struct instead of a class, then
it’s appropriate to make the class’s data members public.

D.2 C Language Conventions
Use the Standard C syntax for function definitions:

void example_function (int an_integer, long a_long, short a_short)
...

If the arguments don’t fit on one line, split the line according to the rules in Section C.1:

void example_function (int an_integer, long a_long, short a_short,
float a_float, double a_double)

...

Declarations of external functions and functions to appear later in the source file should all go in one
place near the beginning of the file (somewhere before the first function definition in the file), or else
it should go in a header file.

Do not put extern declarations inside functions.

D.3 General Issues
Use of Guards for Header Files
Include files should protect against multiple inclusion through the use of macros that guard the file.
Specifically, every include file should begin with the following:

#ifndef FILENAME_H
#define FILENAME_H

... header file contents go here

#endif /* FILENAME_H */

In the above, you should replace FILENAME with the root of the name of the include file being guarded
e.g. if the include file is cognition.h you would write the following:

#ifndef COGNITION_H
#define COGNITION_H

... header file contents go here

#endif /* COGNITION_H */

Date: 26/10/2023
Version: No 1.7

Page 32

D3.2 Software Engineering Standards Manual

Conditional Compilation
Avoid the use of conditional compilation. If your code deals with different configuration options, use
a conventional if-else construct. If the code associated with either clause is long, put it in a separate
function. For example, please write:

if (HAS_FOO) {
...

}
else {

...
}

instead of:

#ifdef HAS_FOO
...

#else
...

#endif

Writing Robust Programs
Avoid arbitrary limits on the size or length of any data structure, including arrays, by allocating all
data structures dynamically. Use malloc or new to create data-structures of the appropriate size.
Remember to avoid memory leakage by always using free and delete to deallocate dynamically-
created data-structures.

Check every call to malloc or new to see if it returned NULL.

You must expect free to alter the contents of the block that was freed. Never access a data structure
after it has been freed.

If malloc fails in a non-interactive program, make that a fatal error. In an interactive program, it
is better to abort the current command and return to the command reader loop.

When static storage is to be written during program execution, use explicit C or C++ code to ini-
tialize it. Reserve C initialize declarations for data that will not be changed. Consider the following
two examples.

static int two = 2; // two will never alter its value
...
static int flag;
flag = TRUE; // might also be FALSE

Constants
Numerical constants (literals) should not be coded directly, except for -1, 0, and 1, which can appear
in a for loop as counter values.

Variable Assignments
Avoid assigning several variables to the same value in a single statement. It is hard to read.

Do not use the assignment operator in a place where it can be easily confused with the equality
operator.

Date: 26/10/2023
Version: No 1.7

Page 33

D3.2 Software Engineering Standards Manual

if (c++ = d++) { // AVOID!
...

}

should be written as

if ((c++ = d++) != 0) {
...

}

Do not use embedded assignments in an attempt to improve run-time performance. This is the job of
the compiler.

d = (a = b + c) + r; // AVOID!

should be written as

a = b + c;
d = a + r;

Parentheses
Use parentheses liberally in expressions involving mixed operators to avoid operator precedence prob-
lems. Even if the operator precedence seems clear to you, it might not be to others — you shouldn’t
assume that other programmers know precedence as well as you do.

if (a == b && c == d) // AVOID!

if ((a == b) && (c == d)) // USE

Standards for Graphical Interfaces
When you write a program that provides a graphical user interface (GUI), you should use a cross-
platform library. The FLTK GUI library [27] satisfies this requirement.

Error Messages
Error messages should look like this:

function_name: error message

Date: 26/10/2023
Version: No 1.7

Page 34

D3.2 Software Engineering Standards Manual

Copyright Messages
If the program is interactive, make it output a short notice like this when it starts in an interactive
mode:

<Program name and version>

This project is funded by the African Engineering and Technology Network (Afretec)
Inclusive Digital Transformation Research Grant Programme.

Website: www.cssr4africa.org

This program comes with ABSOLUTELY NO WARRANTY.

Date: 26/10/2023
Version: No 1.7

Page 35

D3.2 Software Engineering Standards Manual

References

[1] http://www.dream2020.eu.

[2] D. Vernon. Software engineering standards. DREAM Deliverable D3.2, 2014.
http://www.dream2020.eu.

[3] http://www.robotcub.eu.

[4] M. Radestock and S. Eisenbach. Coordination in evolving systems. In Trends in Distributed
Systems, CORBA and Beyond, pages 162—176. Springer, 1996.

[5] P. Soetens, H. Garcia, M. Klotzbuecher, and H. Bruyninckx. First established CAE tool integra-
tion. BRICS Deliverable D4.1, 2010. http://www.best-of-robotics.org.

[6] A. Shakhimardanov, J. Paulus, N. Hochgeschwender, M. Reckhaus, and G. K. Kraetzschmar.
Best practice assessment of software technologies for robotics. BRICS Deliverable D2.1, 2010.
http://www.best-of-robotics.org.

[7] H. Bruyninckx. Robotics software framework harmonization by means of component compos-
ability benchmarks. BRICS Deliverable D8.1, 2010. http://www.best-of-robotics.org.

[8] H. Bruyninckx, M. Klotzbücher, N. Hochgeschwender, G. Kraetzschmar, L. Gherardi, and
D. Brugali. The BRICS component model: A model-based development paradigm for com-
plex robotics software systems. In Proceedings of the 28th Annual ACM Symposium on Applied
Computing, SAC ‘13, pages 1758–1764, New York, NY, USA, 2013. ACM.

[9] C. Schlegel, A. Steck, and A. Lotz. Model-driven software development in robotics: Commu-
nication patterns as key for a robotics component model. In Introduction to Modern Robotics.
iConcept Press, 2011.

[10] D. Brugali and P. Scandurra. Component-Based Robotic Engineering (Part I). IEEE Robotics
and Automation Magazine, pages 84–96, December 2009.

[11] D. Brugali and A. Shakhimardanov. Component-Based Robotic Engineering (Part II). IEEE
Robotics and Automation Magazine, pages 100–112, March 2010.

[12] C. A. R. Hoare. Communicating sequential processes. Communications of the ACM,
21(8):666—677, 1978.

[13] http://www.omg.org.

[14] M. Quigley, K. Conley, B.P. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and A.Y. Ng. Ros:
an open-source robot operating system. In ICRA Workshop on Open Source Software, 2009.

[15] G. Metta, P. Fitzpatrick, and L. Natale. Yarp: yet another robot platform. International Journal
on Advanced Robotics Systems, 3(1):43–48, 2006.

[16] J. Baillie. Urbi: towards a universal robotic low-level programming language. In IEEE/RSJ
International Conference on Intelligent Robots and Systems, IROS 2005, pages 3219—3224,
2005.

Date: 26/10/2023
Version: No 1.7

Page 36

D3.2 Software Engineering Standards Manual

[17] P. Soetens. A software framework for real-time and distributed robot and machine control. PhD
thesis, Department of Mechanical Engineering, Katholieke Universiteit Leuven, Belgium, 2006.

[18] A. Brooks, T. Kaupp, A. Makarenko, S. Williams, and A. Oreback. Software Engineering
for Experimental Robotics, chapter Orca: a component model and repository, pages 231—251.
Springer Tracts in Advanced Robotics. Springer, 2007.

[19] A. Makarenko, A. Brooks, and T. Kaupp. On the benefits of making robotic software frameworks
thin. In IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2007, 2007.

[20] E. I. Barakova, J. C. C. Gillesen, B. E. B. M. Huskens, and T. Lourens. End-user program-
ming architecture facilitates the uptake of robots in social therapies. Robotics and Autonomous
Systems, 61:704–713, 2013.

[21] Robot Operating System (ROS). https://www.ros.org/.

[22] R. Stallman et al. GNU Coding Standards. 2005. http://www.gnu.org/prep/standards/.

[23] Java Code Conventions. http://java.sun.com/docs/codeconv/CodeConventions.pdf.

[24] C++ Coding Standards. http://www.possibility.com/Cpp/CppCodingStandard.html.

[25] Birg Coding Standards for C/C++. http://birg.epfl.ch/page26861.html.

[26] D. van Heesch. Doxygen User Manual. 2005. http://www.doxygen.org.

[27] FLTK User Manual. http://www.fltk.org.

Date: 26/10/2023
Version: No 1.7

Page 37

https://www.ros.org/

D3.2 Software Engineering Standards Manual

Principal Contributors

The main authors of this deliverable are as follows (in alphabetical order).

David Vernon, Carnegie Mellon University Africa.

Date: 26/10/2023
Version: No 1.7

Page 38

D3.2 Software Engineering Standards Manual

Document History

Version 1.0
First draft.
David Vernon.
26 October 2023.

Version 1.1
Corrected due date.
David Vernon.
27 October 2023.

Version 1.2
Fixed an unresolved reference to Section C.1 in Section D.2: C Language Conventions.
David Vernon.
30 October 2023.

Version 1.3
Changes to Appendix A (updated Fig. 5 and increased the number of required launch files) and
Appendix B (consolidated first block comment and first documentation comment).
David Vernon.
1 November 2023.

Version 1.4
Rationalized the names of the launch files for the pepper interface tests package, combining
the actuator and sensor versions for the simulator into one file: interfaceTestLaunchSimula-
tor.launch.
Fixed a typo in actuatorTestInterface.h.
David Vernon.
28 November 2023.

Version 1.5
Changed incorrect node name actuationTest to actuatorTest.
David Vernon.
29 December 2023.

Version 1.6
Simplified ROS package structure for the system architecture subsystems by consolidating all
the constituent nodes into one package cssr_system, rather than having a separate package
for each subsystem.
David Vernon.
30 December 2023.

Version 1.7
Updated directory structure in Fig. 5, moving actuatorTestInput.ini to the data subdi-
rectory and renaming it actuatorTestInput.dat; same for sensorTestInput.ini
Changed README.txt to README.md in Section 4.1.
Added .xml extensions for data files.

David Vernon.
25 January 2023.

Date: 26/10/2023
Version: No 1.7

Page 39

	I Guiding Principles
	Objectives
	Component-based Software Engineering
	Background Material
	Characteristics of Component-Based Software Engineering
	Component Granularity and Systems
	Component Interfaces

	Model-Driven Engineering and the Component-Port-Connector Model
	Guidelines
	II Software Development Environment
	Programming languages and compilers
	Operating Systems
	Robot Programming Framework
	Support for the Component-Port-Connector Meta-Model
	Robot Applications
	Coarse-grained Functionality
	Multiple Instances of Components
	External Configuration
	Different Contexts
	Runtime Configuration
	Assignment of Resources
	Asynchronous Communication
	Distributed Computing
	Stable Interfaces
	Abstract Component Interfaces
	Multiple Transport Layer Protocols
	Graphic User Interface Tools

	Make File Utilities
	Software Repository
	III Standards
	Component and Sub-system Specification
	Component Design
	Component Implementation
	Testing
	Black-box Unit Tests
	System Tests
	Regression Tests

	Documentation
	Appendix Mandatory Standards for File Organization
	Directory Structure
	Filename Roots and Extensions
	File Organization
	Source Files
	Launch Files
	Configuration Files
	Data Files
	Other Files

	Appendix Mandatory Standards for Internal Source Code Documentation
	General Guidelines
	Documentation Comments
	Implementation Comments

	Appendix Recommended Standards for Programming Style
	Indentation and Line Breaks
	Declarations
	Placement
	Statements
	Naming Conventions
	And Finally: Where To Put The Opening Brace {

	Appendix Recommended Standards for Programming Practice
	C++ Language Conventions
	C Language Conventions
	General Issues

	References
	Principal Contributors
	Document History

