
Culturally Sensitive Social Robotics
for Africa

D3.1 System Architecture

Due date: 31/01/2024
Submission Date: 24/01/2024

Revision Date: 11/06/2025

Start date of project: 01/07/2023 Duration: 36 months

Lead organisation for this deliverable: Carnegie Mellon University Africa

Responsible Person: D. Vernon Revision: 2.6

Project funded by the African Engineering and Technology Network (Afretec)
Inclusive Digital Transformation Research Grant Programme

Dissemination Level
PU Public PU
PP Restricted to other programme participants (including Afretec Administration)
RE Restricted to a group specified by the consortium (including Afretec Administration)
CO Confidential, only for members of the consortium (including Afretec Administration)

D3.1 System Architecture

Executive Summary

This deliverable represents the outcome of Task 3.1. It specifies the CSSR4Africa system architec-
ture in detail, identifying the component subsystems, the modules (i.e., ROS nodes) comprising each
subsystem, and the information exchanged between subsystems and modules. This includes a specifi-
cation of the data that are input to each module, the data that are output from each module, and the data
that are used to control the operation of the module, including the manner in which this data is made
available or accessed: through ROS topics, services, or actions, or through input and configuration
files.

Based on the ROS nodes identified in Deliverables D2.2 and D2.3, Deliverable D3.1 provides
the requirements for work package WP4 and WP5 on robot sensing and action, complementing and
augmenting the detailed specification already provided in the work plan, as well as providing the
architecture for the integration of the ROS nodes in each subsystem into a complete operational robot
control system.

Date: 11/06/2025
Version: No 2.6

Page 2

D3.1 System Architecture

Contents

1 Introduction 4

2 System Architecture Overview 5

3 ROS Node Specifications 6
3.1 Animate Behavior . 6
3.2 Behavior Controller . 9
3.3 Face Detection . 11
3.4 Gesture Execution . 14
3.5 Overt Attention . 18
3.6 Person Detection . 22
3.7 Robot Localization . 25
3.8 Robot Navigation . 27
3.9 Sound Detection . 29
3.10 Speech Event . 31
3.11 Tablet Event . 33
3.12 Text to Speech . 35

4 System Architecture in Detail 37

References 38

Principal Contributors 39

Document History 40

Date: 11/06/2025
Version: No 2.6

Page 3

D3.1 System Architecture

1 Introduction

This deliverable, D3.1 System Architecture Design, provides a detailed specification of the archi-
tecture of the CSSR4Africa software system that controls the culturally sensitive social interaction
between the Pepper robot and a human, i.e., a visitor in one of the two use case scenarios specified in
Deliverable D2.1.

It specifies the architecture’s component subsystems, the modules (i.e., ROS nodes) comprising
each subsystem, and the information exchanged between each module. This includes a specification
of the data that are input to each module, the data that are output from each module, and the data
that are used to control the operation of the module, including the manner in which this data is made
available or accessed: through ROS topics, services, or actions, or through input and configuration
files.

Based on the ROS nodes identified in Deliverables D2.2 and D2.3, Deliverable D3.1 provides
the requirements for work package WP4 and WP5 on robot sensing and action, complementing and
augmenting the detailed specification already provided in the work plan, as well as providing the
architecture for the integration of the ROS nodes in each subsystem into a complete operational robot
control system.

For each ROS node, the deliverable specifies the node configuration parameters that are read from
the associated configuration file, the data that are read from the associated input file, the data that are
written to an associated output file, the ROS topics to which the node subscribes for input, the ROS
topics to which the node publishes output, the services that will be advertized and served, and the
services that will be invoked.

The dynamics of the interaction between the visitor and the robot, implemented with these ROS
nodes, will be specified in Deliverable D5.4.2 Robot Mission Language, and implemented in the
behaviorController node in Deliverable D5.4.3 Robot Mission Interpreter.

In the following, we provide a high-level overview of the system architecture, a specification of
each constituent ROS node, and detailed architecture that includes the topics published by each node,
the topics each node subscribes to, and the services advertised and served by each node.

Figure 1: The CSSR4Africa system architecture.

Date: 11/06/2025
Version: No 2.6

Page 4

D3.1 System Architecture

2 System Architecture Overview

The CSSR4Africa system architecture comprises six subsystems, as follows; also see Figure 1.

1. Sensing and Analysis

2. Detection of Interaction Events

3. Animate Behavior

4. Attention

5. Robot Mission Interpreter

6. Gesture, Speech, & Navigation

Each subsystem comprises one or more ROS nodes, as shown in Table 1, with thirteen ROS nodes
in total. We provide a detailed specification of each ROS node in the following section. All thirteen
nodes are part of the cssr_system ROS package; see Deliverable D3.2 Fig. 4 and Table 1.

Subsystem ROS Node
Sensing and Analysis faceDetection

personDetection

soundDetection

Detection of Interaction Events speechEvent

tabletEvent

Robot Mission Interpreter behaviorController

Attention overtAttention

Animate Behavior animateBehavior

Gesture, Speech, & Navigation gestureExecution

robotLocalization

robotNavigation

textToSpeech

Table 1: The thirteen ROS nodes that comprise the six subsystems in the CSSR4Africa culturally-
sensitive human-robot interaction software system.

Date: 11/06/2025
Version: No 2.6

Page 5

D3.1 System Architecture

3 ROS Node Specifications

3.1 Animate Behavior

ROS Node Name

animateBehavior

Functional Specification

This ROS node gives the robot the appearance of an animate agent by continually making subtle body
movements, flexing its hands a little, and rotating its base slightly.

The node actuates the robot joints periodically in a random pattern, keeping the joint angles close
to the default home positions. All the joints, except headYaw and headPitch, are actuated, as well
as the wheels to effect rotation about the robot’s z-axis, but not forward movement along the robot’s
x-axis. The headYaw and headPitch joints are actuated by the attention node. The extent of the
movements is determined by an external parameter. Specifically, the range of movement, from which
the actual movement will be a random sample, will be specified as a percentage of one tenth the full
range of movement. Thus, 10% means that the amount of motion will vary randomly between the
home value and half the maximum value, assuming the home value is midway between the minimum
and maximum values.

The names of the topics to be used for each actuator are read from a data file comprising a sequence
of key-value pairs. The key is the name of the actuator. The value is the topic name. There are two
data files, one for the physical robot and another for the simulator.

To ensure that the robot does not make these animate movements when engaged in culturally
sensitive social interaction through gestures, speech, or when navigating, the generation of animate
behavior is enabled and disabled by the Robot Mission Interpreter subsystem using a dedicated ROS
service which the animateBehavior node advertizes and serves.

Any of the three types of animate behavior — body movement, hand flex, and rotation — can be
selectively invoked. All three will be invoked if none are selectively invoked.

The node can run in normal mode or verbose mode. In verbose mode, data that is published to
topics is also printed to the terminal.

Configuration File

The operation of the animateBehavior node is determined by the contents of a configuration file,
animateBehaviorConfiguration.ini, that contains a list of key-value pairs as shown below.

Date: 11/06/2025
Version: No 2.6

Page 6

D3.1 System Architecture

Key Values Effect
platform robot, simulator Specifies the platform on which the node is to be run,

i.e., the physical Pepper robot or the Pepper simulator
behavior body, hands, rotation Specifies the type of animate behavior to exhibit.
range <number> Specifies the range of actuator movement as a percent-

age of half the full range of movement.
robotTopics pepperTopics.dat Specifies the filename of the file in which the physical

Pepper robot sensor and actuator topic names are stored.
simulatorTopics simulatorTopics.dat Specifies the filename of the file in which the simulator

sensor and actuator topic names are stored.
verboseMode true, false Specifies whether diagnostic data is to be printed to the

terminal.

Input Data File

This node does not read from an input data file.

Output Data File

This node does not write to an output data file.

Topics Subscribed

This node does not subscribe to any topics.

Topics Published

This node publishes on several actuator topics which are identified in the file given by the robotTopics
and simulatorTopics key-value pairs in the configuration file. The following are the topics to
which the animateBehavior node publishes.

Date: 11/06/2025
Version: No 2.6

Page 7

D3.1 System Architecture

Topic Actuator Platform
/pepper_dcm/RightHand_controller/ RHand Physical robot
follow_joint_trajectory

/pepper_dcm/LeftHand_controller/ LHand Physical robot
follow_joint_trajectory

/pepper_dcm/RightArm_controller/ RShoulderPitch, RShoulderRoll, Physical robot
follow_joint_trajectory RElbowYaw, RElbowRoll, RWristYaw

/pepper_dcm/LeftArm_controller/ LShoulderPitch, LShoulderRoll, Physical robot
follow_joint_trajectory LElbowYaw, LElbowRoll, LWristYaw

/pepper_dcm/Pelvis_controller/ HipRoll, HipPitch, KneePitch Physical robot
follow_joint_trajectory

/cmd_vel WheelFL, WheelFR, WheelB Physical robot
/pepper/RightArm_controller/ RElbowYaw, RElbowRoll Simulator
follow_joint_trajectory

/pepper/LeftArm_controller/ LElbowYaw, LElbowRoll Simulator
follow_joint_trajectory

/pepper/Pelvis_controller/ HipRoll, HipPitch, KneePitch Simulator
follow_joint_trajectory

/pepper/cmd_vel WheelFL, WheelFR, WheelB Simulator

Services Supported

This node provides and advertizes a server for a service /animateBehavior/set_activation

to enable and disable the operation of the node, i.e., to activate or suspend the publishing of data
on the actuator topics to give the appearance of an animate agent. It uses a package-specific msg,
State.msg with just one field string state, with a value of either “enabled” or “disabled”.
Depending on the string value, animateBehavior will be enabled or disabled. If the enable/disable
request is successful, the service response is “1”; if it is unsuccessful, it is “0”. The service is called
by the behaviorController node, enabling or disabling animate behavior, as needed.

The following summarizes the services supported.

Service Message Value Effect
/animateBehavior/set_activation enabled, disabled Enable or disable animate behavior

Services Called

This node does not call any services.

Date: 11/06/2025
Version: No 2.6

Page 8

D3.1 System Architecture

3.2 Behavior Controller

ROS Node Name

behaviorController

Functional Specification

This ROS node provides that interprets the robot mission language developed in Task 5.4.2 and imple-
ments the specification of the two use case scenarios in that language, as documented in Deliverable
D5.4.2. In does so by recruiting the robot and visitor behaviors documented in Deliverables D2.2
and D2.3, and the cultural knowledge encapsulated in Deliverable D5.4.1, and realized in the robot
sensing modules developed in Work Package 4 and the robot behavior modules developed in Work
Package 5. The outcome of this task is described in Deliverable D5.4.3.

The dynamics of interaction between the robot and the visitor in the two use case scenarios are
specified by robot mission specifications written in the robot mission language defined in Task 5.4.2.
The behaviorController node interacts with other CSSR4Africa ROS nodes to realize these dy-
namics. It does this by calling various services. These are detailed below.

The node can run in normal mode or verbose mode. In verbose mode, data that is published to
topics is also printed to the terminal.

Configuration File

The operation of the behaviorController node is determined by the contents of a configuration
file, behaviorControllerConfiguration.ini, that contain a list of key-value pairs as shown
below.

Key Values Effect
scenarioSpecification scenarioSpecification.dat Specifies the filename of the file in

which the robot mission specificatgion
is stored.

verboseMode true, false Specifies whether diagnostic data is to
be printed to the terminal.

Input Data File

This node reads the interaction scenario robot mission specification file specified in the configuration
file.

Output Data File

This node does not write to an output data file.

Topics Subscribed

This node subscribes to three topics, as follows.

Date: 11/06/2025
Version: No 2.6

Page 9

D3.1 System Architecture

Topic Node Platform
/speechEvent/text speechEvent Physical robot
/robotLocalization/pose /robotLocalization Physical robot
/personDetection/data /personDetection Physical robot

The /robotLocalization/pose and /personDetection/data topics are needed to allow nav-
igation with respect to people in the robot’s field of view.

Topics Published

This node does not publish to any topics.

Services Supported

This node does not provide and advertize any services.

Services Called

This node calls the following services to implement the interaction dynamics specified in the scenario
robot mission specification.

Service Message Value Effect
/animateBehavior/set_activation To be defined Enable and disable the operation

of animateBehavior
/gestureExecution/perform_gesture To be defined Initiate the performance of a re-

quired gesture
/overtAttention/set_mode To be defined Set the social, scanning, or loca-

tion mode of attention
/robotNavigation/set_goal <x> <y> <theta> Navigate to a given location
/robotLocalization/set_pose <x> <y> <theta> Set robot pose
/tabletEvent/prompt_and_get_response To be defined Seek input from the visitor
/textToSpeech/say_text <string> Say a text message

The type of the variables that are passed as an argument to the service calls has not yet been
defined. This will be done when the node that services and advertizes these services are fully specified.
Similarly, the type of the service call return value has not yet been defined. Again, this will be done
when the node that services and advertizes these services are fully specified.

Helper Classes Used

This node uses an instantiation of a helper class CultureKnowledgeBase to read the culture knowl-
edge base file and retrieve the required data using class access methods.

Similarly, it uses an instantiation of a helper class EnvironmentKnowledgeBase to read the
environment knowledge base file and retrieve the required data using class access methods.

The type of the variables that are passed as arguments to the CultureKnowledgeBase helper
class access methods and the EnvironmentKnowledgeBase helper class access methods have not
yet been defined. These will be done when the helper classes are fully specified in Deliverables D5.4.1
and D5.4.2, respectively.

Date: 11/06/2025
Version: No 2.6

Page 10

D3.1 System Architecture

3.3 Face Detection

ROS Node Name

faceDetection

Functional Specification

This ROS node detects faces and their location in the field of view of the Pepper robot and and
determine their gaze direction. It computes their position in an 2D image frame of reference. In
addition, the region that the face occupies in the image is determined by computing the bounding box
surrounding the face. If more than one face is present in the robot’s field of view, then all of them are
detected and localized.

To ensure coherence in detection and localization over time, each detected face is labelled (e.g.,
“Face 1”) and the same label is assigned to that person in subsequent images. The label and the
bounding box are be colour-coded, assigning different colours to different faces, and the same colour
to a given face in each image in a sequence of images. If that face is no longer detected in one or
more images (the number to be specified in a configuration parameter value) due to, for example, a
false reject error, then that label is not reused. If that face reappears in a subsequent image, it is given
a new label. As such, this module is only concerned with consistent detection of face over time, not
recognition of previously detected face, and it is assumed that people don’t change between images.
Consequently, a face detected in one image is deemed to be the same as one in a previous image if
the spatial displacement between their centroids is within a defined tolerance or the Intersection over
Union (IoU) between their bounding boxes exceeds a specified threshold defined in the configuration
parameters.

Additionally, for each detected face, the ROS node assesses whether the person is gazing directly
at the robot. This is accomplished using head pose estimation, which provides a simpler alternative to
mutual gaze detection.

The node has two inputs: an RGB image and a depth image from either the robot’s cameras or the
Intel realsense camera. In addition, there is an option to use compressed images instead of raw image
for both RGB and depth image.

The node has three outputs: an RGB image, with bounding boxes drawn around each detected face
in the RGB images, depth image and an array of records (one record for each face detected).

Each record consists of the face label, the 3D image coordinates representing the centroid of the
bounding box, the distance (or depth) of the face from the camera based on the centroid, a Boolean
value indicating whether mutual gaze is established between the corresponding face and the Pepper
robot, and the width and height of the face bounding box.

The image is displayed in an openCV window when the node is operating in verbose mode. The
array of records is published to a topic named /faceDetection/data.

The names of the topics to be used for each camera is read from a data file comprising a sequence
of key-value pairs. The key is the name of the camera. The value is the topic name.

The node can run in normal mode or verbose mode. In verbose mode, data that is published to
topics is also printed to the terminal, and output images are also displayed in openCV windows.

Date: 11/06/2025
Version: No 2.6

Page 11

D3.1 System Architecture

Configuration File

The operation of the faceDetection node is determined by the contents of a configuration file,
faceDetectionConfiguration.json, that contain a list of key-value pairs as shown below.

algorithm mediapipe, sixdrep Specifies which algorithm to use.
useCompressed <true or false> Specifies to use compressed images or raw im-

ages.
mpFacedetConfidence <number> Specifies the confidence threshold for the Me-

diaPipe face detection algorithm.
mpHeadposeAngle <number> Specifies the maximum angular deviation (in

degrees) for MediaPipe head pose estimation.
centroidMaxDistance <number> Specifies the maximum allowed distance (in

pixels) between centroids for tracking continu-
ity.

centroidMaxDisappeared <number> Specifies the maximum number of frames a
centroid can disappear before being considered
lost.

sixdrepnetConfidence <number> Specifies the confidence threshold for the Six-
DRepNet pose estimation algorithm.

sixdrepnetHeadposeAngle <number> Specifies the maximum angular deviation (in
degrees) for SixDRepNet head pose estimation.

sortMaxDisappeared <number> Specifies the maximum number of frames an
object can disappear for SORT tracker before
being removed.

sortMinHits <number> Specifies the minimum number of consecutive
hits required for SORT tracker initialization.

sortIouThreshold <number> Specifies the Intersection over Union (IoU)
threshold for SORT tracker associations.

verboseMode <true or false> Specifies whether diagnostic data is to be
printed to the terminal and diagnostic images
are to be displayed in OpenCV windows.

Input Data File

This node does not read from an input data file.

Output Data File

This node does not write to an output data file.

Topics Subscribed

This node subscribes to four topics: two RGB camera sensor topics (one published by the Pepper robot, one by
the RealSense camera), and two depth camera topics (one published by the Pepper robot, one by the RealSense
camera). These are specified in the files identified by the robotTopics key-value pair in the configuration
file.

Date: 11/06/2025
Version: No 2.6

Page 12

D3.1 System Architecture

The following are the topics to which the faceDetection node subscribes.

Topic Sensor / Node Platform
/camera/color/image raw RGBRealSense Intel RealSense

/camera/color/image raw/compressed
RGBRealSense

(Compressed)
Intel RealSense

/camera/aligned depth to color/image raw DepthRealSense Intel RealSense

/camera/aligned depth to color/image raw/compressed
DepthRealSense

(Compressed)
Intel RealSense

/naoqi driver/camera/front/image raw FrontCamera Physical Robot (Pepper)
/naoqi driver/camera/depth/image raw DepthCamera Physical Robot (Pepper)

Topics Published

The following are the topics which the faceDetection node publishes.

Topic Sensor / Actuator / Node Platform
/faceDetection/data overtAttention, GUI Physical robot

Services Supported

This node does not support any services.

Services Called

This node does not call any services.

Date: 11/06/2025
Version: No 2.6

Page 13

D3.1 System Architecture

3.4 Gesture Execution

ROS Node Name

gestureExecution

Functional Specification

This ROS node provides the robot with the ability to execute five forms of gesture: deictic, symbolic, and iconic
non-verbal hand gestures, and bowing and nodding body gestures.

The specifications for these gestures are in joint space, except for deictic gestures which are in Cartesian
space. Some gestures, e.g., iconic and symbolic hand gestures, are specified by learning the required motions
either by manual teleoperation, recording the joint angles, or by demonstration, using an RGB-D depth camera
to determine the joint angles of human gestures in a skeletal model and mapping these to the robot joints. Other
gestures, i.e., deictic hand gestures and body gestures, are specified by gesture parameters, such as the pointing
location for deictic gestures and the degree of inclination for bowing and nodding, and the joint angles are
computed using the kinematic model of the robot head, torso, and arms. For deictic gestures, which require the
robot to point at objects in its environment and move its head to look at the object, the pose of the robot in the
world frame of reference is also used.

If the arm cannot achieve the required pose for a deictic gesture, the robot rotates to make the pose achiev-
able, returning to the original orientation once the gesture is complete. Futhermore, the arm returns to a neutral
position by the robot’s side when the gesture is complete.

Iconic and symbolic gestures are defined by descriptors that specify the final gesture joint configuration and
the manner in which that configuration is achieved. Descriptors comprise four elements. Each element is a
key-value pair, where the value can be an identifier, a number, a vector of numbers, or a vector of a vector of
numbers.

The first key-value pair specifies the gesture type (e.g., type iconic, type symbolic).
The second key-value pair identifies the ID number (e.g., ID 01).
The third element defines the number of waypoints in the trajectory, including the start gesture joint config-

uration and the final gesture joint configuration.
The fourth element is a vector of joint angles vectors. The number of joint angle vectors is equal to the

number of way points, including the start joint configuration and the final gesture configuration. Body gestures
have three joints: knee pitch, hip pitch, hip roll. Iconic and symbolic gestures have five joints: shoulder pitch,
shoulder roll, elbow yaw, elbow roll, and wrist yaw. Before beginning the gesture, the arm is moved from its
current joint configuration to the start joint configuration, i.e., the joint angles specified in the first vector in the
vector of vector of joint angles.

The number of elements in the vector of joint angles is determined by the gesture type.
Descriptors for each gesture are stored in an external descriptor file.
If an iconic or symbolic gesture involves two arms, they are treated as a composite of two individual ges-

tures, one for each arm.
The joint angles for bow and nod body gestures, as well as hand deictic gestures, are computed at run time

using the kinematic model of the robot and the bow angle, nod angle, or the location in the environment to
which the robot should point. The bow angle, nod angle, and pointing location are provided as an input to the
module, along with the time in milliseconds that should elapse between the start of the gesture and the end of
the gesture.

The pointing location with respect to the robot body, specified by the shoulder pitch and shoulder roll
angles, is computed from the pointing location in the world frame of reference (and supplied as an input to the
module) and the pose of the robot in the world frame of reference (provided by the robotLocalization
node. No waypoints are required for deictic gestures; the joints are actuated to achieve the target joint angles,
interpolating linearly, or adjusting the joint angles, joint angular velocities, and joint accelerations to mimic
biological movement by using a minimum jerk model of biological motion.

It is assumed that the knee pitch angle is fixed during a bow body gesture and that the bow angle corresponds
to the change in the hip pitch angle with respect to the default hip pitch angle. Similarly, it is assumed that the

Date: 11/06/2025
Version: No 2.6

Page 14

D3.1 System Architecture

nod angle is the change in the head pitch angle with respect to the default head pitch angle. Finally, it is assumed
that the arm and fingers are straight in a deictic gesture, with fixed values of elbow yaw, elbow roll, wrist yaw,
and hand angles, so that the palm of the hand is directed upwards.

The input to the module is a record comprising the gesture type (e.g., iconic, symbolic, deictic,
bow, nod), the gesture ID for symbolic or iconic gestures (e.g., 01), the duration of the gesture in milliseconds,
and either a bow angle in degrees (for a bow body gesture), or a nod angle in degrees (for a nod body gesture), or
the three dimensional coordinates of a pointing location (for a deictic gesture). For deictic gestures, the module
also inputs the current robot pose from the robotLocalization node.

The output is a sequence of joint angles, joint angular velocities, and, optionally, joint angular accelerations.
Data is published on the appropriate topics, as required.

The names of the topics to be used for each actuator is read from a data file comprising a sequence of
key-value pairs. The key is the name of the actuator. The value is the topic name.

The node can run in normal mode or verbose mode. In verbose mode, data that is published to topics is also
printed to the terminal.

Configuration File

The operation of the gestureExecution node is determined by the contents of a configuration file,
gestureExecutionConfiguration.ini, that contains a list of key-value pairs, as shown below.

Key Values Effect
interpolation linear, biological Specifies the interpolation type. This indicates

how the joint angles that define the trajectory in
joint space between the current joint angles and
the gesture joint angles are computed for body
gesture and hand deictic gestures, and between
way points for iconic and symbolic gestures.
The two options are: (a) independent linear in-
terpolation of each joint angle, and (b) biolog-
ical motion, selecting the sequence of joint an-
gular velocities and joint accelerations to form
a trajectory in time and joint space that mimics
biological movement.

gestureDescriptors gestureDescriptors.dat Specifies the filename of the file in which the
gesture descriptors are stored.

robotTopics pepperTopics.dat Specifies the filename of the file in which the
physical Pepper robot sensor and actuator topic
names are stored.

verboseMode true, false Specifies whether diagnostic data is to be
printed to the terminal.

Input Data File

This node does not read from an input data file.

Output Data File

This node does not write to an output data file.

Date: 11/06/2025
Version: No 2.6

Page 15

D3.1 System Architecture

Topics Subscribed

This node subscribes to one topic, published by robotLocalization node, which provides the pose of the
robot.

The following are the topics to which the gestureExecution node subscribes.

Topic Node Platform
/robotLocalization/pose robotLocalization Physical robot

Topics Published

The following are the topics to which the gestureExecution node publishes. These are specified in the
file identified by the robotTopics key-value pair in the configuration file.

Topic Actuator Platform
/pepper_dcm/RightHand_controller/ RHand Physical robot
follow_joint_trajectory

/pepper_dcm/LeftHand_controller/ LHand Physical robot
follow_joint_trajectory

/pepper_dcm/RightArm_controller/ RShoulderPitch, RShoulderRoll, Physical robot
follow_joint_trajectory RElbowYaw, RElbowRoll, RWristYaw
/pepper_dcm/LeftArm_controller/ LShoulderPitch, LShoulderRoll, Physical robot
follow_joint_trajectory LElbowYaw, LElbowRoll, LWristYaw

/pepper_dcm/Pelvis_controller/ HipRoll, HipPitch, KneePitch Physical robot
follow_joint_trajectory

/cmd_vel WheelFL, WheelFR, WheelB Physical robot

Services Supported

This node provides and advertizes a server for a service /gestureExecution/perform_gesture to
initiate the performance of a required gesture. It uses a package-specific msg, Gesture.msg. The message
has several fields, as follows.

Field Field Value Field Type Units
gesture_type iconic, symbolic, deictic, bow, nod String
gesture_id <number> Integer
gesture_duration <number> Integer milliseconds
bow_nod_angle <number> Integer degrees
location_x <number> Real metres
location_y <number> Real metres
location_z <number> Real metres

If the perform_gesture request is successful, the service response is “1”; if it is unsuccessful, it is “0”.
The service is called by the behaviorController node.

The following summarizes the services supported.

Service Message Value Effect
/gestureExecution/perform_gesture iconic, symbolic, Perform an iconic, symbolic,

deictic, bow, nod or deictic gesture

Date: 11/06/2025
Version: No 2.6

Page 16

D3.1 System Architecture

Services Called

This node invokes the service /overtAttention/set_mode to move the robot’s head to focus on the
location required to gesture at.

Service Message Value Effect
/overtAttention/set_mode location Move the head to focus on a location

x, y, z defined by the parameters

Date: 11/06/2025
Version: No 2.6

Page 17

D3.1 System Architecture

3.5 Overt Attention

ROS Node Name

overtAttention

Functional Specification

This ROS node provides the robot with the ability to direct the gaze of the robot to salient features in the
environment or to a given location in the environment.

There are five modes of operation: a social mode, a scanning mode, a location mode, a seeking mode, and
a disabled mode. The first is active when the robot is engaged in social interaction. In this mode, the salient
features are people’s bodies, faces, eyes, and voices. The second is active when the robot is not engaged in
social interaction and it is scanning the environment looking for people with whom to interact. In this mode,
the salient features also include objects of interest in the robot’s environment, in addition faces. People’s faces
has a higher priority than other general features. In the second mode of operation, the robot switches its focus
of attention after a short period of time and does not return directly to the original focus of attention, thereby
scanning its environment. In the third mode of operation, the robot gazes at a given location in its environment.
If the head cannot achieve the required pose to gaze at a given location, the robot rotates to make the pose
achievable. In the fourth mode, seeking, the robot attempts to establish mutual gaze with a person nearby for
a short duration, after which, if unsuccessful, it returns success or failure. To establish mutual gaze, the node
searches for a face that is looking straight at the robot. The robot might have to rotate about its base as well as
rotating its head when searching. In disabled mode, the head is centred and remains immobile. The mode of
operation is selected on the basis of a service request (see below).

Two saliency maps are generated, one based on social features and one based on the combination of social
and general conspicuous features. The first is based on the output of Task 4.2.2 Face & Mutual Gaze Detection
and Localization, and Task 4.2.3 Sound Detection and Localization. The second is based on information-
theoretic saliency and the output of Task 4.2.2 Face & Mutual Gaze Detection and Localization [1].

In the scanning attention mode, three processes are active. The first is a winner-take-all process to determine
a single focus of attention from the candidates in the saliency map. This is effected by a selective tuning model
[2, 3, 4]. The second is an Inhibition-of-Return (IOR) mechanism that attenuates the attention value of previous
winning locations so that new regions become the focus of attention. The third is an habituation process to
gradually reduce the salience of the current focus of attention, thereby ensuring that attention is fixated on a
given point only for a limited period [5].

The robot’s gaze is directed by publishing the appropriate messages on the topic that controls the headYaw
and headPitch joints so that the gaze is centred on the focus of attention. This requires the calibration of
the x and y offset of the focus of attention in the image to the change in headYaw and headPitch angles,
respectively. In the case of aural attention to conspicuous sounds, it requires the calibration of the angle of
arrival of the sound with the change in headYaw angle. Fixation on sounds will only control the headYaw
angle, i.e., rotation in the horizontal plane about the head’s z-axis.

These calibration constants are provided as parameters to the node. If the angle of rotation of the headYaw
joint is greater than some threshold (defined as a parameter), then after rotating the head to fixate on the focus
of attention, the base of the robot and the head rotate in opposite directions so that the robot continues to gaze
at the focus of attention while it realigns its head with its body. The threshold for this head-torso realignment is
provided as a parameter to the node.

The node has four inputs, all acquired by subscribing to the appropriate topics. These are the outputs of the
faceDetection node and the soundDetection node to be used to compute the saliency map in social
mode, an RGB image from the robot’s top forehead camera or the additional RealSense external camera to be
used to compute the saliency map in scanning mode, and, when attending to a given location in the environment,
the current robot pose from the robotLocalization node.

The node has four outputs, effected by publishing to the topic to control the headYaw and headPitch
joints, and, if required, the topic to control robot’s wheels and the robot’s angular velocity when adjusting its
pose to recentre the gaze or enable the gaze to be directed at a given location. The third output is an RGB
image depicting the saliency function and the selected focus of attention. The image is displayed in an openCV

Date: 11/06/2025
Version: No 2.6

Page 18

D3.1 System Architecture

window when the node is operating in verbose mode (see below). The fourth output is the current active mode
indicating which mode of operation the node is in at that moment. The mode is continuously published to the
/overtAttention/mode topic.

The names of the topics to be used for each actuator are read from a data file comprising a sequence of
key-value pairs. The key is the name of the actuator. The value is the topic name.

To ensure that the robot does not rotate to realign its head and torso when navigating, attention is disabled by
the behaviorController node using a dedicated service which the overtAttention node advertizes
and serves. It can also enable attention by setting the mode to social, seeking, scanning, or location mode also
effected by the overtAttention node using the same dedicated service which the overtAttention
node advertizes and serves.

The node can run in normal mode or verbose mode. In verbose mode, data that is published to topics is also
printed to the terminal, and output images are also displayed in openCV windows.

Configuration File

The operation of the overtAttention node is determined by the contents of a configuration file,
overtAttentionConfiguration.ini, that contain a list of key-value pairs as shown below.

Key Values Effect
camera FrontCamera, RealSense Specifies which RGB camera to use.
realignmentThreshold <number> Specifies the threshold on the angular differ-

ence between head and base that must be met
before the head and base are realigned.

xOffsetToHeadYaw <number> Specifies the calibration constant that defines
the conversion of the offset in the (horizontal)
x-axis of an image from the image center to
the change in headYaw joint angle.

yOffsetToHeadPitch <number> Specifies the calibration constant that defines
the conversion of the offset in the (vertical) y-
axis of an image from the image center to the
change in headPitch joint angle.

robotTopics pepperTopics.dat Specifies the filename of the file in which
the physical Pepper robot sensor and actuator
topic names are stored.

verboseMode true, false Specifies whether diagnostic data is to be
printed to the terminal and diagnostic images
are to be displayed in OpenCV windows.

Input Data File

This node does not read from an input data file.

Output Data File

This node does not write to an output data file.

Date: 11/06/2025
Version: No 2.6

Page 19

D3.1 System Architecture

Topics Subscribed

This node subscribes to six topics: three from other nodes in the cssr_system package, and three cam-
era sensor topics. These are are specified in the file identified by the robotTopics key-value pair in the
configuration file.

The following are the topics to which the overtAttention node subscribes.

Topic Sensor / Node Platform
/faceDetection/data faceDetection Physical robot
/robotLocalization/pose robotLocalization Physical robot
/soundDetection/direction soundDetection Physical robot
/naoqi_driver/camera/front/image_raw FrontCamera Physical robot
/camera/color/image_raw RGBRealSense Intel RealSense
/camera/depth/image_rect_raw DepthRealSense Intel RealSense

Topics Published

This node controls five joints: headYaw and headPitch to adjust the head gaze, and WheelFL, WheelFR,
and WheelB to rotate the robot and allow the gaze angle to be recentred. This node also publishes the current
active mode of operation to a topic.

The specific topics that are used to control these joints are identified in the file given by the robotTopics
key-value pair in the configuration file.

The following are the topics to which the overtAttention node publishes.

Topic Actuator Platform
/pepper_dcm/Head_controller/ headYaw, headPitch Physical robot
follow_joint_trajectory

/cmd_vel WheelFL, WheelFR, WheelB Physical robot
follow_joint_trajectory

/overtAttention/mode Physical robot

The following table details the custom message, Status.msg, that the attention node publishes on the
/overtAttention/mode opic.

Field Field Value Field Type Comment
mode social, scanning, location, seek, disabled String
value 1 (seeking), 2 (success), 3 (failure) Integer

The value field only has meaning in seeking mode and scanning mode. The value 1 means the robot is at-
tempting to establish mutual gaze. The value 2 means the robot has succeeded in detecting mutual gaze. And
the value 3 means the robot failed to establish mutual gaze with anyone nearby. However, the value 3 has no
meaning in scanning mode as it can keep scanning indefinitely because scanning mode is not time bound.

Services Supported

This node provides and advertizes a server for a service /overtAttention/set_mode to set the social,
scanning, location, seeking, or disabled modes of attention. It uses a package-specific msg, Mode.msg. The
message has four fields, as follows.

Field Field Value Field Type Units
state social, scanning, location, seeking, disabled String
location_x <number> Real metres
location_y <number> Real metres
location_z <number> Real metres

Date: 11/06/2025
Version: No 2.6

Page 20

D3.1 System Architecture

If the request is successful, the service response is “1”; if it is unsuccessful, it is “0”. The service is called
by the behaviorController node and the the gestureExecution node, setting the required mode of
attention.

The following summarizes the services supported.

Service Message Value Effect
/overtAttention/set_mode social, scanning, location Select mode of attention

seeking, disabled

Services Called

This node does not call any services.

Date: 11/06/2025
Version: No 2.6

Page 21

D3.1 System Architecture

3.6 Person Detection

ROS Node Name

personDetection

Functional Specification

This ROS node detects people in the field of view of the Pepper robot and determines their location. It computes
their position in an 2D image frame of reference and in the robot’s head 3D Cartesian frame of reference.
In addition, the region that the person occupies in the image is determined by computing the bounding box
surrounding the person. If more than one person is present in the robot’s field of view, then all of them are
detected and localized.

To ensure coherence in detection and localization over time, each detected person is labelled (e.g., “Person
1”) and the same label is assigned to that person in subsequent images. The label and the bounding box are
be colour-coded, assigning different colours to different people, and the same colour to a given person in each
image in a sequence of images. If that person is no longer detected in one or more images (the number to
be specified in a configuration parameter value) due to, for example, a false reject error, then that label is not
reused. If that person reappears in a subsequent image, she or he is given a new label. As such, this module
is only concerned with consistent detection of people over time, not recognition of previously detected people,
and it is assumed that people don’t change between images. Consequently, a person in one image is deemed to
be the same one in a previous image if the spatial displacement of the person is less than a given tolerance (to
specified by a configuration parameter value).

The node has two inputs: an RGB image from one of the robot’s cameras and a depth image from one of
the robot’s depth sensors. In addition, there is an option to use compressed images instead of raw images for
both RGB and depth image.

The node has three outputs: an RGB image and a depth image, with bounding boxes drawn around each
detected person in RGB images, and an array of records, one record for each person detected.

The components of a record are the person label, the 3D coordinates corresponding to the centroid of the
bounding box surrounding the person in the image, the distance from the robot to that centroid, and the width
and height of the bounding box.

The RGB image and the depth image are displayed in an openCV window when the node is operating in
verbose mode (see below).

The array of records is published to a topic named /personDetection/data.
The names of the topics to be used for each sensor will be read from a data file comprising a sequence of

key-value pairs. The key is the name of the sensor. The value is the topic name.
The node can run in normal mode or verbose mode. In verbose mode, data that is published to topics is also

printed to the terminal, and output images are also displayed in openCV windows.

Date: 11/06/2025
Version: No 2.6

Page 22

D3.1 System Architecture

Configuration File

The operation of the personDetection node is determined by the contents of a configuration file,
personDetectionConfiguration.ini, that contain a list of key-value pairs as shown below.

Key Values Effect
useCompressed true or false Specifies to use compressed image or raw images.
confidenceIouThreshold <number> Specifies the confidence threshold for the YOLO per-

son detection algorithm.
sortMaxDisappeared <number> Specifies the maximum number of frames an object

can disappear for SORT tracker before being removed.
sortMinHits <number> Specifies the minimum number of consecutive hits re-

quired for SORT tracker initialization.
sortIouThreshold <number> Specifies the Intersection over Union (IoU) threshold

for SORT tracker associations.
verboseMode true or false Specifies whether diagnostic data is to be printed to

the terminal and diagnostic images are to be displayed
in OpenCV windows.

Input Data File

This node does not read from an input data file.

Output Data File

This node does not write to an output data file.

Topics Subscribed

This node subscribes to five topics: four camera sensor topics and one depth sensor topic. These are are specified
in the file identified by the robotTopics key-value pair in the configuration file.

The following are the topics to which the personDetection node subscribes.

Topic Sensor / Node Platform
/camera/color/image raw RGBRealSense Intel RealSense

/camera/color/image raw/compressed
RGBRealSense

(Compressed)
Intel RealSense

/camera/aligned depth to color/image raw DepthRealSense Intel RealSense

/camera/aligned depth to color/image raw/compressed
DepthRealSense

(Compressed)
Intel RealSense

/naoqi driver/camera/front/image raw FrontCamera Physical Robot (Pepper)
/naoqi driver/camera/depth/image raw DepthCamera Physical Robot (Pepper)

Topics Published

The following are the topics to which the personDetection node publishes.

Topic Sensor / Actuator / Node Platform
/personDetection/data personDetection Physical robot

Date: 11/06/2025
Version: No 2.6

Page 23

D3.1 System Architecture

Services Supported

This node does not support any services.

Services Called

This node does not call any services.

Date: 11/06/2025
Version: No 2.6

Page 24

D3.1 System Architecture

3.7 Robot Localization

ROS Node Name

robotLocalization

Functional Specification

This ROS node determines the pose (position and orientation) of the robot in a Cartesian world frame of ref-
erence. It does this continuously, in real time, by updating the current pose based on relative pose estimation,
using either odometry or the robot’s inertial management unit IMU (or a combination of both). Since pose es-
timation errors using relative techniques grow with time, the module periodically resets its pose estimate using
absolute pose estimation.

Absolute position estimation is accomplished by triangulation, using three landmarks (three are required
because their distance from the robot is not known since the robot’s range sensors are not sufficiently accurate).
Landmark recognition is accomplished both using SIFT (Scale Invariant Feature Transform) and YOLO (You
Look Only Once) real-time object detection. The position of the landmarks is extracted from a map of the
environment. This map will be produced in Task 5.5.3 Environment Map Generation. The orientation of the
robot is computed only for its rotation about the Z-axis; adjustments of body posture through rotation about the
X- and Y-axes are ignored. This rotation angle is recovered by determining the direction given by the line of
sight from the robot to one of the landmarks, and adjusting for any rotation about the Z-axis of the robot’s head
frame of reference with respect to the base frame of reference.

The node has five inputs: For relative pose estimation, the input is the odometry data published by the robot
and data from the robot’s accelerometer and gyrometer. For absolute pose estimation, the input takes the form
of an RGB image from one of the robot’s cameras. Input is also be acquired from the encoder on the head yaw
actuator, i.e., the joint responsible for rotation in the azimuth (horizontal) plane. The names of the topics to be
used for each sensor will be read from a data file comprising a sequence of key-value pairs. The key is the name
of the sensor. The value is the topic name. The node also serves a robotLocalization/reset_pose
service to reset the pose of the robot using absolute pose estimation. This service is typically called by the
robotNavigation node.

The node has two outputs: an RGB image, with bounding boxes drawn around each detected landmark,
and a record with the 2D pose information: x and y coordinates and rotation about the Z-axis. The image
is displayed in an openCV window when the node is operating in verbose mode (see below). The record is
published on a topic named /robotLocalization/pose.

The node can run in normal mode or verbose mode. In verbose mode, data that is published to topics is also
printed to the terminal, and output images are also displayed in openCV windows.

Configuration File

The operation of the robotLocalization node is determined by the contents of a configuration file that
contain a list of key-value pairs as shown below.
The configuration file is named robotLocalizationConfiguration.ini.

Key Values Effect
camera FrontCamera, RealSense Specifies which RGB camera to use.
resetInterval <number> Specifies the distance that can be travelled in centime-

tres before the relative pose estimate is reset using the
absolute pose estimate.

robotTopics pepperTopics.dat Specifies the filename of the file in which the physi-
cal Pepper robot sensor and actuator topic names are
stored.

verboseMode true, false Specifies whether diagnostic data is to be printed to the
terminal and diagnostic images are to be displayed in
OpenCV windows.

Date: 11/06/2025
Version: No 2.6

Page 25

D3.1 System Architecture

Input Data File

This node does not read from an input data file.

Output Data File

This node does not write to an output data file.

Topics Subscribed

This node subscribes to six topics: two RGB camera sensor topics (one published by the Pepper robot, one
by the RealSense camera), one depth camera topic (by the RealSense camera), an odometry topic, and inertial
measurement unit (IMU) topic, and a joint states topic for the head yaw angle. These are specified in the files
identified by the robotTopics key-value pair in the configuration file.

The following are the topics to which the robotLocalization node subscribes.

Topic Sensor Platform
/naoqi_driver/camera/front/image_raw FrontCamera Physical robot
/camera/color/image_raw RGBRealSense Intel RealSense
/camera/depth/image_rect_raw DepthRealSense Intel RealSense
/naoqi_driver/odom Odometry Physical robot
/naoqi_driver/imu/base IMU Physical robot
/joint_states Head Yaw Physical robot

Topics Published

The following are the topics to which the robotLocalization node publishes.

Topic Sensor / Actuator / Node Platform
/robotLocalization/pose gestureExecution Physical robot

overtAttention

robotNavigation

behaviorController

Services Supported

This node provides and advertizes a server for a service /robotLocalization/reset_pose to reset
the pose of the robot using absolute pose estimation. It uses a generic msg, Reset.msg with just one field
string, with a value “reset”. If the reset request is successful, the service response is “1”; if it is unsuc-
cessful, it is “0”. The service is called by the robotNavigation node.

It also provides and advertizes a server for a service /robotLocalization/set_pose to set the pose
of the robot to some given value. It uses a custom message to specify the pose with the x and y coordinates,
and the angle of rotation θ about the z axis. If the set request is successful, the service response is “1”; if it is
unsuccessful, it is “0”. The service is called by the behaviorController node using data read from the
environment knowledge base, typically the pose of the robot at its greeting location before it starts navigating.

The following summarizes the services supported.

Service Message Value Effect
/robotLocalization/reset_pose reset Reset robot pose
/robotLocalization/set_pose <x> <y> <theta> Set robot pose

Services Called

This node does not call any services.

Date: 11/06/2025
Version: No 2.6

Page 26

D3.1 System Architecture

3.8 Robot Navigation

ROS Node Name

robotNavigation

Functional Specification

This ROS node controls the locomotion of the Pepper robot so that it navigates its environment, in which
there are fixed inanimate obstacles and moveable obstacles in the form of humans, from its current position
along the shortest path to a destination position and orientation identified in the use case scenario robot mission
specification. Navigation is effected by identifying waypoints along the navigation path and the robot moves
from waypoint to waypoint.

The node optionally augments a metric workspace map of the robot’s environment with obstacles corre-
sponding to the location of any humans that have been detected in the robot’s field of view by the personDetection
node. The extent of the human obstacle is determined using culturally sensitive proxemics. This augmented
workspace map is then used to generate a configuration space map that constrains the robot’s path from its
current location to its target location using either Dijkstra’s algorithm and the A* algorithm. Waypoints are
identified using one of two candidate techniques: equidistant waypoints and high path curvature waypoints.
Locomotion from waypoint to waypoint is effected using one of two locomotion algorithms: Multiple Input
Multiple Output (MIMO) and divide and conquer (DnQ).

The node has three inputs. The first is a record identifying the destination pose for the robot, specified by
the x and y coordinates of the location and the direction the robot should face (i.e., the direction of the X-axis
in the robot base frame, all specified in the workspace frame of reference). This record is part of a message in
a service call by the behaviorController node.1 The second is robot’s current pose. This is provided by
messages published to the robotLocalization node. The third input is the required cultural knowledge
regarding proxemics. This is provided querying the African cultural knowledge base using an instantiation of a
CultureKnowledgeBase helper class to read the culture knowledge base file and retrieve the required data
using class access methods.

The node has two outputs. The first is sequence of forward velocity and angular velocity values published on
the relevant cmd_vel topic. The full name of the cmd_vel topic is will be read from a data file comprising a
sequence of key-value pairs. The second is the planned path drawn on a configuration space image. This image
is displayed in an openCV window when the node is operating in verbose mode (see below).

The node can run in normal mode or verbose mode. In verbose mode, data that is published to topics is also
printed to the terminal, and output images are also displayed in openCV windows.

Configuration File

The operation of the robotNavigation node is determined by the contents of a configuration file,
robotNavigationConfiguration.ini, that contain a list of key-value pairs as shown below.

Key Values Effect
map scenarioOneMap.dat Specifies the filename of the file in which the workspace

map is stored.
pathPlanning Dijkstra, A* Specifies the path planning algorithm to be used.
socialDistance true, false Specifies whether or not to take into consideration social

constraints while navigating.
robotTopics pepperTopics.dat Specifies the filename of the file in which the physical

Pepper robot sensor and actuator topic names are stored.
verboseMode true, false Specifies whether diagnostic data is to be printed to the

terminal and diagnostic images are to be displayed in
OpenCV windows.

1A ROS action will replace the service if it is determined that feedback on achievement of the navigation goal is required.

Date: 11/06/2025
Version: No 2.6

Page 27

D3.1 System Architecture

Input Data File

This node does not read from an input data file.

Output Data File

This node does not write to an output data file.

Topics Subscribed

This node subscribes to one topic, as follows.

Topic Node Platform
/robotLocalization/pose robotLocalization Physical robot

Topics Published

The following are the topics to which the robotNavigation node publishes.

Topic Sensor / Actuator / Node Platform
/cmd_vel WheelFL, WheelFR, WheelB Physical robot

Services Supported

This node provides and advertizes a server for a service /robotNavigation/set_goal to request nav-
igation to a given goal position and orientation. It uses a custom message to specify the pose with the x and
y coordinates, and the angle of rotation θ about the z axis. If the navigation request is successful, the service
response is “1”; if it is unsuccessful, it is “0”. The service is called by the behaviorController node.

The following summarizes the service supported.

Service Message Value Effect
/robotNavigation/set_goal <x> <y> <theta> Define navigation goal pose

Services Called

This node calls the following two services.

Service Message Value Effect
/robotLocalization/reset_pose reset Reset the pose of the robot using absolute lo-

calization

Helper Classes Used

This node uses an instantiation of a helper class CultureKnowledgeBase to read the culture knowledge
base file and retrieve the required data using class access methods.

Similarly, it uses an instantiation of a helper class EnvironmentKnowledgeBase to read the environ-
ment knowledge base file and retrieve the required data using class access methods.

The type of the variables that are passed as arguments to the CultureKnowledgeBase helper class
access methods and the EnvironmentKnowledgeBase helper class access methods have not yet been
defined. These will be done when the helper classes are fully specified in Deliverables D5.4.1 and D5.4.2,
respectively.

Date: 11/06/2025
Version: No 2.6

Page 28

D3.1 System Architecture

3.9 Sound Detection

ROS Node Name

soundDetection

Functional Specification

This ROS node detects vocal sounds within the robot’s hearing range and determines the direction of arrival of
the sound.

Localization is limited to the azimuth (i.e., horizontal) plane. If a sound is detected, its direction of arrival
will be determined in the robot’s Cartesian head frame of reference based on the interaural time difference
(ITD) between the arrival of the sound at the front left and front right microphones on the top of the robot’s
head. The node is tuned to detect human voices rather than ambient sounds or background noise by using signal
processing techniques such as band-pass filtering.

The node has one inputs: the audio signal from the front left, front right, back left, and back right micro-
phones, respectively. This data is published on /naoqi_driver/audio.

The node has two outputs: the angle of arrival in degrees relative to the robot head’s forward-looking x-axis,
and the audio signal of the detected sound captured by the front left microphone, from onset of the sound to
offset.

The angle is published to a topic named /soundDetection/direction. The channels of the audio
signal that is captured by the front left microphone is published to a topic named /soundDetection/signal.
The final specification of this message type will be defined in Task 4.2.3 Sound Detection and Localization.

The names of the topics to be used for each sensor will be read from a data file comprising a sequence of
key-value pairs. The key is the name of the sensor. The value is the topic name.

The node can run in normal mode or verbose mode. In verbose mode, data that is published to topics is also
printed to the terminal.

Configuration File

The operation of the soundDetection node is determined by the contents of a configuration file,
soundDetectionConfiguration.ini, that contain a list of key-value pairs as shown below.

Key Values Effect
algorithm ITD Specifies the localization technique to be used.
lowFreqencyCutoff <number> Specifies the low cutoff frequency in the band-pass fil-

ter in hertz.
highFreqencyCutoff <number> Specifies the low cutoff frequency in the band-pass fil-

ter in hertz.
thresholdEnergy <number> Specifies the threshold energy of the audio signal that

qualifies it as a conspicuous sound.
robotTopics pepperTopics.dat Specifies the filename of the file in which the physi-

cal Pepper robot sensor and actuator topic names are
stored.

verboseMode true, false Specifies whether diagnostic data is to be printed to the
terminal.

Input Data File

This node does not read from an input data file.

Output Data File

This node does not write to an output data file.

Date: 11/06/2025
Version: No 2.6

Page 29

D3.1 System Architecture

Topics Subscribed

This node subscribes to two microphone sensor topics. These are are specified in the file identified by the
robotTopics key-value pairs in the configuration file.

The following are the topics to which the soundDetection node subscribes.

Topic Sensor Platform
/naoqi_driver/audio MicroFL_sensor, MicroFR_sensor Physical robot

MicroBL_sensor, MicroBR_sensor

Topics Published

The following are the topics to which the soundDetection node publishes.

Topic Sensor / Actuator / Node Platform
/soundDetection/direction overtAttention, speechEvent Physical robot
/soundDetection/signal speechEvent Physical robot

Services Supported

This node does not support any services.

Services Called

This node does not call any services.

Date: 11/06/2025
Version: No 2.6

Page 30

D3.1 System Architecture

3.10 Speech Event

ROS Node Name

speechEvent

Functional Specification

This ROS node processes a vocal sound, i.e., an utterance, represented as an audio signal, spoken by an inter-
action partner and transcribes it into written text.

The node uses a deep neural network that has been trained so that it can perform automated speech recog-
nition. In the case that the spoken utterance cannot be recognized, either because the sound is not a spoken
utterance or because it uses vocabulary on when the neural network has not been trained, then the node flags
this by producing a text that reads “Error: speech not recognized”.

The node has one input: an audio signal that is captured by the soundDetection module, published on
a topic named soundDetection/signal. When the soundDetection module is not available or is not
publishing to the soundDetection/signal topic, the speechEvent ROS node flags this by producing
a text that reads “Error: soundDetection is down”.

The node has one output: a string representing the message in the spoken audio signal. This is published on
a topic named speechEvent/text.

The node can run in normal mode or verbose mode. In verbose mode, data that is published to topics is also
printed to the terminal, and a graphical application is opened on the screen where data that is published to the
speechEvent/text topic is displayed.

Configuration File

The operation of the speechEvent node is determined by the contents of a configuration file,
speechEventConfiguration.ini, that contain a list of key-value pairs as shown below.

Key Values Effect
language kinyarwanda, english Specifies the language in which the utterance is spo-

ken.
verboseMode true, false Specifies whether diagnostic data is to be printed to

the terminal.
cuda true, false Specifies whether to use GPUs. The term ‘cuda’ is

chosen as the key to alert the user that only NVIDIA
GPUs are supported.

confidence <number> The confidence level on a scale of 0 to 1 above
which transcriptions are assumed to be acceptable
and correct.

speechPausePeriod <number> The time period above which one utterance is as-
sumed to be separate from a preceding utterance.

maxUtteranceLength <number> The maximum length (in seconds) of an utterance.
Longer utterances are split when they go past this
length.

sampleRate <number> Specifies the sampling rate of the incoming audio
sourced from the /soundDetection/signal
ROS topic.

heartbeatMsgPeriod <number> Specifies the time period in seconds at which a pe-
riodic heartbeat message is sent to the terminal.

Input Data File

This node does not read from an input data file.

Date: 11/06/2025
Version: No 2.6

Page 31

D3.1 System Architecture

Output Data File

This node does not write to an output data file.

Topics Subscribed

The following are the topics to which the speechEvent node subscribes.

Topic Node Platform
soundDetection/signal soundDetection Physical robot

Topics Published

The following are the topics to which the speechEvent node publishes.

Topic Node Platform
/speechEvent/text behaviorController Physical robot

Services Supported

This node provides and advertizes a server for a service /speechEvent/set_language to set the lan-
guage to be used. The service /speechEvent/set_enabled is also provided by this node, and it is used
to set whether the speechEvent ROS node is enabled to transcribe speech utterances or disabled so that it
does not transcribe speech utterances. These services are called by the behaviorController node.

The following summarizes the service supported.

Service Message Value Effect
/speechEvent/set_language kinyarwanda, english Sets the transcription language at runtime.

Returns a response of 0 if unsuccessful
(e.g., if using an unsupported language
such as Arabic), and 1 if the service in-
vocation is successful.

/speechEvent/set_enabled true, false Enables or disables the transcription pro-
cess .Returns a response of 0 if unsuccess-
ful (e.g., if invoked with a value other than
true or false), and 1 if the service invoca-
tion is successful.

Services Called

This node does not call any services.

Date: 11/06/2025
Version: No 2.6

Page 32

D3.1 System Architecture

3.11 Tablet Event

ROS Node Name

tabletEvent

Functional Specification

This ROS node provides a ROS service to display a message, which will typically be a menu of interaction
options, including a prompt requiring the selection of an option, wait for the visitor to select an option, and
return the option selected. This service is called by the behaviorController node, in the Robot Mission
Interpreter subsystem.

The node has one input: a number indexing the message to be displayed on the tablet PC, passed as an
argument to a service call by the behaviorController.

The node has one output: a number representing option selected by the visitor, returned by the service call.
The node can run in normal mode or verbose mode. In verbose mode, data that is published to topics is also

printed to the terminal.

Configuration File

The operation of the tabletEvent node is determined by the contents of a configuration file,
tabletEventConfiguration.ini, that contains a list of key-value pairs as shown below.

Key Values Effect
menuDataFile tabletEventInput.dat Specifies the filename of the menu data.
verboseMode true, false Specifies whether diagnostic data is to be printed to the

terminal.

Input Data File

This node reads the data file specified by the menuDataFile key-value pair.

Output Data File

This node does not write to an output data file.

Topics Subscribed

This node does not subscribe to a ROS topic.

Topics Published

This node does not publish to a ROS topic.

Services Supported

This node provides and advertizes a server for a service /tabletEvent/prompt_and_get_response
to seek input from the visitor. It uses a package-specific msg, Prompt.msgwith just one field string message.
The value of the field is text to be printed on the tablet screen (the format specification is yet to be decided).
The node then blocks for a predetermined time, waiting for the visitor to select an option. If the visitor responds
within the specified time, the service response is option number 1 – n; if they don’t, the service response is
zero. The service is called by the behaviorController node, setting the required mode of attention.

Date: 11/06/2025
Version: No 2.6

Page 33

D3.1 System Architecture

The following summarizes the services supported.

Service Message Value Effect
/tabletEvent/prompt_and_get_response <string> Print message, wait for input, and set

response accordingly.

Services Called

This node does not call any services.

Date: 11/06/2025
Version: No 2.6

Page 34

D3.1 System Architecture

3.12 Text to Speech

ROS Node Name

textToSpeech

Functional Specification

This ROS node converts English, isiZulu, and Kinyarwanda text to speech. It uses a speech synthesis engine to
convert text to an audio file that can then be played on the robots loudspeakers.

The node has one input: a string with the text to be spoken.
The node has one output: an audio signal representing the message in the spoken audio signal.
The node can run in normal mode or verbose mode. In verbose mode, data that is published to topics is also

printed to the terminal.

Configuration File

The operation of the textToSpeech node is determined by the contents of a configuration file that contain a
list of key-value pairs as shown below.
The configuration file is named textToSpeechConfiguration.ini.

Key Values Effect
language kinyarwanda, isiZulu, english Specifies the language in which the text is writ-

ten.
verboseMode true, false Specifies whether diagnostic data is to be

printed to the terminal.
ip 172.29.111.230, 172.29.111.240 Specifies the robot you want to use, the ip can

be changed according to the network robot is
connected to.

port 9559 Specifies a virtual communication endpoint
used to identify specific services or processes
running on a device / robot.

use_cuda true, false Specifies whether to use GPUs. The term ‘cuda’
is chosen as the key to alert the user that only
NVIDIA GPUs are supported.

Input Data File

This node does not read from an input data file.

Output Data File

This node does not write to an output data file.

Topics Subscribed

This node does not subscribe to any topics.

Topics Published

The following are the topics to which the textToSpeech node publishes. Note that the /speech topic
accepts a text string, not an audio signal, and works best with the English language. Alternatives are being
investigated.

Date: 11/06/2025
Version: No 2.6

Page 35

D3.1 System Architecture

Topic Actuator Platform
/speech LoudSpeakerLeft, LoudSpeakerRight Physical robot & Simulator

Services Supported

This node provides and advertizes a server for a service /textToSpeech/say_text to request the conver-
sion of a text string to an audio signal, and to play that audio on the robot’s loudspeakers.

It uses a standard message type, std_msgs::String defined in std_msgs/String.msg, to specify
the text. If the request is successful, the service response is “1”; if it is unsuccessful, it is “0”. The service is
called by the behaviorController node.

The following summarizes the service supported.

Service Message Value Effect
/textToSpeech/say_text string <message> Convert text to an audio signal and play it on the

robot’s loudspeakers.
string, <language>

Services Called

This node does not call any services.

Date: 11/06/2025
Version: No 2.6

Page 36

D3.1 System Architecture

4 System Architecture in Detail
Figure 2 shows the CSSR4Africa system architecture specified using the ROS nodes, topics, and services spec-
ified in Section 3.

Sensors

personDetection

 /naoqi_driver/camera/front/image_raw

 /naoqi_driver/camera/depth/image_raw

 /camera/color/image_raw

 /camera/depth/image_rect_raw

soundDetection /naoqi_driver/audio

 faceDetection

 /naoqi_driver/camera/front/image_raw

 /naoqi_driver/camera/depth/image_raw

 /camera/color/image_raw

 /camera/depth/image_rect_raw

 overtAttention

 /naoqi_driver/camera/front/image_raw

 /camera/color/image_raw

 /camera/depth/image_rect_raw

robotLocalization

 /naoqi_driver/camera/front/image_raw

 /naoqi_driver/odom

 /naoqi_driver/imu/base

 /joint_states

 /camera/color/image_raw

 /camera/depth/image_rect_raw

behaviorController

 /personDetection/data

 speechEvent

 /soundDetection/signal

 /soundDetection/direction

 /faceDetection/data

 /speechEvent/text

 tabletEvent

Actuators

/speechEvent/set_enabled
/speechEvent/set_language

/tabletEvent/prompt_and_get_response

 /overtAttention/set_mode

animateBehavior

/animateBehavior/set_activation

gestureExecution/gestureExecution/perform_gesture

/robotNavigation/set_pose

 robotNavigation /robotNavigation/set_goal

 textToSpeech /textToSpeech/say_text

 /overtAttention/mode

 /pepper_dcm/Head_controller/follow_joint_trajectory

 /cmd_vel

 /pepper_dcm/RightHand_controller/follow_joint_trajectory

 /pepper_dcm/LeftHand_controller/follow_joint_trajectory

 /pepper_dcm/RightArm_controller/follow_joint_trajectory

 /pepper_dcm/LeftArm_controller/follow_joint_trajectory

 /pepper_dcm/Pelvis_controller/follow_joint_trajectory

 /cmd_vel

 /overtAttention/set_mode

 /pepper_dcm/RightHand_controller/follow_joint_trajectory

 /pepper_dcm/LeftHand_controller/follow_joint_trajectory

 /pepper_dcm/RightArm_controller/follow_joint_trajectory

 /pepper_dcm/LeftArm_controller/follow_joint_trajectory

 /pepper_dcm/Pelvis_controller/follow_joint_trajectory

 /cmd_vel

 /robotLocalization/pose

 /robotLocalization/pose

 /robotLocalization/pose

 /robotLocalization/pose

 /robotLocalization/reset_pose

 /cmd_vel

Figure 2: The CSSR4Africa system architecture specified at the level of ROS nodes (thin border
rectangles), ROS topics (black lines), ROS services (red lines), and sources & sinks for sensor topics
and actuator topics (thick border rectangles).

Date: 11/06/2025
Version: No 2.6

Page 37

D3.1 System Architecture

References
[1] N. D. B. Bruce and J. K. Tsotsos. Saliency, attention, and visual search: An information theoretic approach.

Journal of Vision, 9(3):1–24, 2009.

[2] J. K. Tsotsos, S. Culhane, W. Wai, Y. Lai, N. David, and F. Nuflo. Modeling visual attention via selective
tuning. Artificial Intelligence, 78:507–547, 1995.

[3] J. K. Tsotsos. Cognitive vision need attention to link sensing with recognition. In H. I. Christensen and
H.-H. Nagel, editors, Cognitive Vision Systems: Sampling the Spectrum of Approaches, volume 3948 of
LNCS, pages 25–36, Heidelberg, 2006. Springer.

[4] J. K. Tsotsos. A Computational Perspective on Visual Attention. MIT Press, Cambridge MA, 2011.

[5] A. Zaharescu, A. L. Rothenstein, and J. K. Tsotsos. Towards a biologically plausible active visual search
model. In L. Paletta, J. K. Tsotsos, E. Rome, and G. Humphreys, editors, Proceedings of the Second
International Workshop on Attention and Performance in Computational Vision, WAPCV, volume LNCS
3368, pages 133–147, Berlin, 2004. Springer.

Date: 11/06/2025
Version: No 2.6

Page 38

D3.1 System Architecture

Principal Contributors
The main authors of this deliverable are as follows (in alphabetical order).

Muhammed Danso, Carnegie Mellon University Africa.
David Vernon, Carnegie Mellon University Africa.
Yohannes Haile, Carnegie Mellon University Africa.

Date: 11/06/2025
Version: No 2.6

Page 39

D3.1 System Architecture

Document History
Version 1.0

First draft.
David Vernon.
24 January 2024.

Version 1.1
Added a configuration file for tabletEvent.
David Vernon.
25 January 2024.

Version 1.2
Added key-value pair for personDetection and factDetection to specify the algorithm to be
used.
David Vernon.
01 February 2024.

Version 1.3
Updated topics for the animateBehavior and gestureExecution nodes, replacing command,
with follow_joint_trajectory. Updated topics for the soundDetection node.
Removed /pepper/camera/stereo/image_raw topic for simulator in the faceDetection,
overtAttention, personDetection, and robotLocalization nodes.
Added behaviorController to the list of nodes to which robotLocalization publishes.
David Vernon.
09 May 2024.

Version 1.4
Updated topics for the overtAttention to include a topic on which the mode is published.
Muhammed Danso.
27 August 2024.

Version 1.5
Changed scriptInterpreter to behaviorController.
Amended some of the Version 1.4 updates.
David Vernon.
28 August 2024.

Version 1.6
Removed waypointNumber and waypointSelection keys from robotNavigation.
Changed the specification of the pose in the robotNavigation/set_goal service from using
geometry_msgs/Pose.msgwith <Point> <Quaternion> to a custom message with <x> <y> <theta>
.
Changed references to script language and script interpreter to robot mission language and robot mission
interpreter.
David Vernon.
09 September 2024.

Version 1.7
Updated scanning mode for the overtAttention to prioritize detected faces when scanning the en-
vironment for general features.
Updated gestureExecution to include head movement to complement pointing gestures. (with the
help of Adedayo)
Updated faceDetection to remove eye detection and add mutual gaze detection. (with the help of
Yohannes)
Updated Figure 2 system architecture. Muhammed Danso.
21 December 2024.

Date: 11/06/2025
Version: No 2.6

Page 40

D3.1 System Architecture

Version 1.8
Removed /naoqi_driver/camera/stereo/image_raw from overtAttention, personDetection,
and robotLocalization . Added /camera/color/image_raw and /camera/depth/image_rect_raw
to overtAttention, personDetection, and robotLocalization .
Changed option for selecting camera from StereoCamera to RealSense in overtAttention,
personDetection and robotLocalization .
Updated the GraphViz architecture diagram to reflect these changes.
David Vernon.
1 January 2025.

Version 1.9
Changed the configuration file from faceDetectionConfiguration.ini to
faceDetectionConfiguration.json
Updated the face Detection Configuration file key-value pairs table.
Fixed error on the Topics Subscribed overAttention node.
Removed a statement in the Sound Detection regrading message type.
Fixed error on Topics Published on Person Detection.
Yohannes Haile.
16 January 2025.

Version 1.10
Moved behaviorController to keep the ROS nodes in alphabetic order, and renamed the Section
Robot Mission Interpreter to Behavior Controller.
David Vernon.
20 January 2025.

Version 1.11
Changed Interaction Scenario Manager subsystem to Robot Mission Interpreter subsystem.
Changed Interaction Manager in Figure 1 to Robot Mission Interpreter and added the Environment
Knowledge Base.
Removed knowledgeBase node.
Added subsections on the CultureKnowledgeBase and EnvironmentKnowledgeBase helper
classes in Sections 3.2 and 3.8, respectively.
David Vernon.
29 January 2025.

Version 2.0
Revised the system architecture to limit the support for the simulator. Simulator support will not be
provided for ROS nodes that have the option of using an external device such as the RealSense camera
or a LiDAR, or that use the Pepper microphones, speakers, or the tablet PC, or are dependent on data
produced by these nodes. Consequently, the only node that supports the simulator is Animate Behavior.
Since this is a major revision, the version number is advanced to 2.0.
David Vernon.
1 February 2025.

Version 2.1
Fixed incorrect reference to personDetection in documenting the topics to which the robotNavigation
node publishes.
David Vernon.
9 February 2025.

Version 2.2
Updated the functional descriptions of soundDetection and speechEvent. Updated the configu-
ration file specification of speechEvent and the services it supports.
David Vernon.
26 March 2025.

Date: 11/06/2025
Version: No 2.6

Page 41

D3.1 System Architecture

Version 2.3
Added an option to use compressed images for faceDetection and personDetection.
Added compressed image option in the configuration file table faceDetection and
personDetection.
Added topics of the compressed images for the topics Subscribed for faceDetection.
Added topics of the compressed images for the topics Subscribed for personDetection.
Updated the person and face detection configuration file to camel case.
Added width and height as one component of the array of records.
Blue text is used to mark addition of text or table entries and red text was used to mark deletion of text
or table entries will be changed to black in the next version.
Yohannes Haile.
31 March 2025.

Version 2.4
Added a service /robotLocalization/set_pose and a call from behaviorController.
Changed behaviour to behavior globally. This mainly affects animateBehavior
Removed the red text in the previous version and changed the blue text to black. David Vernon.
7 May 2025.

Version 2.5
In the configuration file table textToSpeechConfiguration.ini. Added three configurable
components which are robot’s Ip, port, and use_cuda.
Also added another service request string <language> to the service support table in 3.12.
Muhirwa Richard.
02 June 2025.

Version 2.6
Update speechEvent to publish “Error: soundDetection is down” when soundDetection is un-
available
Open a graphical application that displays text transcriptions on the screen when speechEvent is run
in verbose mode
Add confidence, speechPausePeriod and maxUtteranceLength configuration options to
speechEvent’s configuration file
Add support for the /speechEvent/set_enabled ROS service to speechEvent
Use an updated system architecture diagram to show the new /speechEvent/set_enabled ROS
service
Clifford Onyonka.
11 June 2025.

Date: 11/06/2025
Version: No 2.6

Page 42

	Introduction
	System Architecture Overview
	ROS Node Specifications
	Animate Behavior
	Behavior Controller
	Face Detection
	Gesture Execution
	Overt Attention
	Person Detection
	Robot Localization
	Robot Navigation
	Sound Detection
	Speech Event
	Tablet Event
	Text to Speech

	System Architecture in Detail
	References
	Principal Contributors
	Document History

