
Culturally Sensitive Social Robotics
for Africa

D3.1 System Architecture

Due date: 31/01/2024
Submission Date: 24/01/2024

Revision Date: 09/05/2024

Start date of project: 01/07/2023 Duration: 36 months

Lead organisation for this deliverable: Carnegie Mellon University Africa

Responsible Person: D. Vernon Revision: 1.3

Project funded by the African Engineering and Technology Network (Afretec)
Inclusive Digital Transformation Research Grant Programme

Dissemination Level
PU Public PU
PP Restricted to other programme participants (including Afretec Administration)
RE Restricted to a group specified by the consortium (including Afretec Administration)
CO Confidential, only for members of the consortium (including Afretec Administration)

D3.1 System Architecture

Executive Summary

This deliverable represents the outcome of Task 3.1. It specifies the CSSR4Africa system architec-
ture in detail, identifying the component subsystems, the modules (i.e., ROS nodes) comprising each
subsystem, and the information exchanged between subsystems and modules. This includes a specifi-
cation of the data that are input to each module, the data that are output from each module, and the data
that are used to control the operation of the module, including the manner in which this data is made
available or accessed: through ROS topics, services, or actions, or through input and configuration
files.

Based on the ROS nodes identified in Deliverables D2.2 and D2.3, Deliverable D3.1 provides
the requirements for work package WP4 and WP5 on robot sensing and action, complementing and
augmenting the detailed specification already provided in the work plan, as well as providing the
architecture for the integration of the ROS nodes in each subsystem into a complete operational robot
control system.

Date: 09/05/2024
Version: No 1.3

Page 2

D3.1 System Architecture

Contents

1 Introduction 4

2 System Architecture Overview 5

3 ROS Node Specifications 6
3.1 Animate Behaviour . 6
3.2 Face Detection . 9
3.3 Gesture Execution . 12
3.4 Knowledge Base . 16
3.5 Overt Attention . 18
3.6 Person Detection . 23
3.7 Robot Localization . 26
3.8 Robot Navigation . 29
3.9 Script Interpreter . 32
3.10 Sound Detection . 34
3.11 Speech Event . 37
3.12 Tablet Event . 39
3.13 Text to Speech . 41

4 System Architecture in Detail 43

References 45

Principal Contributors 46

Document History 47

Date: 09/05/2024
Version: No 1.3

Page 3

D3.1 System Architecture

Figure 1: The CSSR4Africa system architecture.

1 Introduction

This deliverable, D3.1 System Architecture Design, provides a detailed specification of the archi-
tecture of the CSSR4Africa software system that controls the culturally sensitive social interaction
between the Pepper robot and a human, i.e., a visitor in one of the two use case scenarios specified in
Deliverable D2.1.

It specifies the architecture’s component subsystems, the modules (i.e., ROS nodes) comprising
each subsystem, and the information exchanged between each module. This includes a specification
of the data that are input to each module, the data that are output from each module, and the data
that are used to control the operation of the module, including the manner in which this data is made
available or accessed: through ROS topics, services, or actions, or through input and configuration
files.

Based on the ROS nodes identified in Deliverables D2.2 and D2.3, Deliverable D3.1 provides
the requirements for work package WP4 and WP5 on robot sensing and action, complementing and
augmenting the detailed specification already provided in the work plan, as well as providing the
architecture for the integration of the ROS nodes in each subsystem into a complete operational robot
control system.

For each ROS node, the deliverable specifies the node configuration parameters that are read from
the associated configuration file, the data that are read from the associated input file, the data that are
written to an associated output file, the ROS topics to which the node subscribes for input, the ROS
topics to which the node publishes output, the services that will be advertized and served, and the
services that will be invoked.

The dynamics of the interaction between the visitor and the robot, implemented with these ROS
nodes, will be specified in Deliverable D5.4.2 Scenario Script Language, and implemented in the
scriptInterpreter node in Deliverable D5.4.3 Scenario Script Interpreter.

In the following, we provide a high-level overview of the system architecture, a specification of
each constituent ROS node, and detailed architecture that includes the topics published by each node,
the topics each node subscribes to, and the services advertised and served by each node.

Date: 09/05/2024
Version: No 1.3

Page 4

D3.1 System Architecture

2 System Architecture Overview

The CSSR4Africa system architecture comprises six subsystems, as follows; also see Figure 1.

1. Sensing and Analysis

2. Detection of Interaction Events

3. Animate Behaviour

4. Attention

5. Interaction Manager

6. Gesture, Speech, & Navigation

Each subsystem comprises one or more ROS nodes, as shown in Table 1, with thirteen ROS nodes
in total. We provide a detailed specification of each ROS node in the following section. All thirteen
nodes are part of the cssr_system ROS package; see Deliverable D3.2 Fig. 4 and Table 1.

Subsystem ROS Node
Sensing and Analysis faceDetection

personDetection

soundDetection

Detection of Interaction Events speechEvent

tabletEvent

Interaction Manager knowledgeBase

scriptInterpreter

Attention overtAttention

Animate Behaviour animateBehaviour

Gesture, Speech, & Navigation gestureExecution

robotLocalization

robotNavigation

textToSpeech

Table 1: The thirteen ROS nodes that comprise the six subsystems in the CSSR4Africa culturally-
sensitive human-robot interaction software system.

Date: 09/05/2024
Version: No 1.3

Page 5

D3.1 System Architecture

3 ROS Node Specifications

3.1 Animate Behaviour

ROS Node Name

animateBehaviour

Functional Specification

This ROS node gives the robot the appearance of an animate agent by continually making subtle body
movements, flexing its hands a little, and rotating its base slightly.

The node actuates the robot joints periodically in a random pattern, keeping the joint angles close
to the default home positions. All the joints, except headYaw and headPitch, are actuated, as well
as the wheels to effect rotation about the robot’s z-axis, but not forward movement along the robot’s
x-axis. The headYaw and headPitch joints are actuated by the attention node. The extent of the
movements is determined by an external parameter. Specifically, the range of movement, from which
the actual movement will be a random sample, will be specified as a percentage of one tenth the full
range of movement. Thus, 10% means that the amount of motion will vary randomly between the
home value and half the maximum value, assuming the home value is midway between the minimum
and maximum values.

The names of the topics to be used for each actuator are read from a data file comprising a sequence
of key-value pairs. The key is the name of the actuator. The value is the topic name. There are two
data files, one for the physical robot and another for the simulator.

To ensure that the robot does not make these animate movements when engaged in culturally
sensitive social interaction through gestures, speech, or when navigating, the generation of animate
behaviour is enabled and disabled by the Interaction Manager subsystem using a dedicated ROS ser-
vice which the animateBehaviour node advertizes and serves.

Any of the three types of animate behaviour — body movement, hand flex, and rotation — can be
selectively invoked. All three will be invoked if none are selectively invoked.

The node can run in normal mode or verbose mode. In verbose mode, data that is published to
topics is also printed to the terminal.

Configuration File

The operation of the animateBehaviour node is determined by the contents of a configuration file,
animateBehaviourConfiguration.ini, that contains a list of key-value pairs as shown below.

Date: 09/05/2024
Version: No 1.3

Page 6

D3.1 System Architecture

Key Values Effect
platform robot, simulator Specifies the platform on which the node is to be run,

i.e., the physical Pepper robot or the Pepper simulator
behaviour body, hands, rotation Specifies the type of animate behaviour to exhibit.
range <number> Specifies the range of actuator movement as a percent-

age of half the full range of movement.
robotTopics pepperTopics.dat Specifies the filename of the file in which the physical

Pepper robot sensor and actuator topic names are stored.
simulatorTopics simulatorTopics.dat Specifies the filename of the file in which the simulator

sensor and actuator topic names are stored.
verboseMode true, false Specifies whether diagnostic data is to be printed to the

terminal.

Input Data File

This node does not read from an input data file.

Output Data File

This node does not write to an output data file.

Topics Subscribed

This node does not subscribe to any topics.

Topics Published

This node publishes on several actuator topics which are identified in the file given by the robotTopics
and simulatorTopics key-value pairs in the configuration file. The following are the topics to
which the animateBehaviour node publishes.

Date: 09/05/2024
Version: No 1.3

Page 7

D3.1 System Architecture

Topic Actuator Platform
/pepper_dcm/RightHand_controller/ RHand Physical robot
follow_joint_trajectory

/pepper_dcm/LeftHand_controller/ LHand Physical robot
follow_joint_trajectory

/pepper_dcm/RightArm_controller/ RShoulderPitch, RShoulderRoll, Physical robot
follow_joint_trajectory RElbowYaw, RElbowRoll, RWristYaw

/pepper_dcm/LeftArm_controller/ LShoulderPitch, LShoulderRoll, Physical robot
follow_joint_trajectory LElbowYaw, LElbowRoll, LWristYaw

/pepper_dcm/Pelvis_controller/ HipRoll, HipPitch, KneePitch Physical robot
follow_joint_trajectory

/cmd_vel WheelFL, WheelFR, WheelB Physical robot
/pepper/RightArm_controller/ RElbowYaw, RElbowRoll Simulator
follow_joint_trajectory

/pepper/LeftArm_controller/ LElbowYaw, LElbowRoll Simulator
follow_joint_trajectory

/pepper/Pelvis_controller/ HipRoll, HipPitch, KneePitch Simulator
follow_joint_trajectory

/pepper/cmd_vel WheelFL, WheelFR, WheelB Simulator

Services Supported

This node provides and advertizes a server for a service /animateBehaviour/set_activation
to enable and disable the operation of the node, i.e., to activate or suspend the publishing of data
on the actuator topics to give the appearance of an animate agent. It uses a package-specific msg,
State.msg with just one field string state, with a value of either “enabled” or “disabled”.
Depending on the string value, animateBehaviour will be enabled or disabled. If the enable/disable
request is successful, the service response is “1”; if it is unsuccessful, it is “0”. The service is called
by the scriptInterpreter node, enabling or disabling animate behaviour, as needed.

The following summarizes the services supported.

Service Message Value Effect
/animateBehaviour/set_activation enabled, disabled Enable or disable animate be-

haviour

Services Called

This node does not call any services.

Date: 09/05/2024
Version: No 1.3

Page 8

D3.1 System Architecture

3.2 Face Detection

ROS Node Name

faceDetection

Functional Specification

This ROS node detects faces and eyes in the field of view of the Pepper robot and determines their
location. It computes their position in an 2D image frame of reference. In addition, the region that
the face occupies in the image is determined by computing the bounding box surrounding the face. If
more than one face is present in the robot’s field of view, then all of them are detected and localized.

To ensure coherence in detection and localization over time, each detected face is labelled (e.g.,
“Face 1”) and the same label is assigned to that person in subsequent images. The label and the
bounding box are be colour-coded, assigning different colours to different faces, and the same colour
to a given face in each image in a sequence of images. If that face is no longer detected in one or
more images (the number to be specified in a configuration parameter value) due to, for example,
a false reject error, then that label is not reused. If that face reappears in a subsequent image, it is
given a new label. As such, this module is only concerned with consistent detection of face over time,
not recognition of previously detected people, and it is assumed that people don’t change between
images. Consequently, a person in one image is deemed to be the same one in a previous image
if the spatial displacement of the person is less than a given tolerance (specified by a configuration
parameter value).

The node has two inputs: an RGB image from one of the robot’s cameras and the output of the
personDetector node, i.e., a list of detected persons and their locations and bounding boxes. These
bounding boxes can be used to define regions of interest in order to restrict the search for the faces
(i.e., at the top of the person bounding boxes).

The node has two outputs: an RGB image, with bounding boxes drawn around each detected face
in both images, and an array of records, one record for each face detected.

The components of a record are the face label, the 2D image coordinates denoting the centroid
of the bounding box, the width and height of the bounding box, a confidence value between 0 and
1 indicating the likelihood that the detection is not a false positive, and the 2D image coordinates of
each eye.

The image is displayed in an openCV window when the node is operating in verbose mode (see
below). The array of records is published to a topic named /faceDetection/data.

The names of the topics to be used for each actuator is read from a data file comprising a sequence
of key-value pairs. The key is the name of the actuator. The value is the topic name. There are two
data files, one for the physical robot and another for the simulator.

The node can run in normal mode or verbose mode. In verbose mode, data that is published to
topics is also printed to the terminal, and output images are also displayed in openCV windows.

Configuration File

The operation of the faceDetection node is determined by the contents of a configuration file,
faceDetectionConfiguration.ini, that contain a list of key-value pairs as shown below.

Date: 09/05/2024
Version: No 1.3

Page 9

D3.1 System Architecture

Key Values Effect
platform robot, simulator Specifies the platform on which the node

is to be run, i.e., the physical Pepper robot
or the Pepper simulator

algorithm Haar, YOLO, CNN Specifies which algorithm to use.
camera FrontCamera, StereoCamera Specifies which RGB camera to use.
falseRejectTolerance <number> Specifies the number of images in which

a face is not detected before it will be as-
signed a new label if and when it reap-
pears at the same location. For example, a
value 1 indicates that if the face is not de-
tected in one image but reappears at that
location in the next, it will be assigned the
same label.

spatialTolerance <number> Specifies the spatial tolerance, given as a
percentage of the width of the image, for
a face to be assigned the same label.

robotTopics pepperTopics.dat Specifies the filename of the file in which
the physical Pepper robot sensor and ac-
tuator topic names are stored.

simulatorTopics simulatorTopics.dat Specifies the filename of the file in which
the simulator sensor and actuator topic
names are stored.

verboseMode true, false Specifies whether diagnostic data is to be
printed to the terminal and diagnostic im-
ages are to be displayed in OpenCV win-
dows.

Input Data File

This node does not read from an input data file.

Output Data File

This node does not write to an output data file.

Topics Subscribed

This node subscribes to three topics: two camera sensor topics and one topic published by the
personDetection node. The specific camera topics depend on whether the node is operating with
the physical robot or the simulator. These are are specified in the files identified by the robotTopics
and simulatorTopics key-value pairs in the configuration file.

The following are the topics to which the personDetection node subscribes.

Date: 09/05/2024
Version: No 1.3

Page 10

D3.1 System Architecture

Topic Sensor / Node Platform
/naoqi_driver/camera/front/image_raw FrontCamera Physical robot
/naoqi_driver/camera/stereo/image_raw StereoCamera Physical robot
/pepper/camera/front/image_raw FrontCamera Simulator
/personDetection/data personDetection Physical robot & Simulator

Topics Published

The following are the topics to which the personDetection node publishes.

Topic Sensor / Actuator / Node Platform
/faceDetection/data overtAttention, GUI Physical robot & Simulator

Services Supported

This node does not support any services.

Services Called

This node does not call any services.

Date: 09/05/2024
Version: No 1.3

Page 11

D3.1 System Architecture

3.3 Gesture Execution

ROS Node Name

gestureExecution

Functional Specification

This ROS node provides the robot with the ability to execute five forms of gesture: deictic, symbolic,
and iconic non-verbal hand gestures, and bowing and nodding body gestures.

The specifications for these gestures are in joint space, except for deictic gestures which are in
Cartesian space. Some gestures, e.g., iconic and symbolic hand gestures, are specified by learning
the required motions either by manual teleoperation, recording the joint angles, or by demonstration,
using an RGB-D depth camera to determine the joint angles of human gestures in a skeletal model
and mapping these to the robot joints. Other gestures, i.e., deictic hand gestures and body gestures,
are specified by gesture parameters, such as the pointing location for deictic gestures and the degree
of inclination for bowing and nodding, and the joint angles are computed using the kinematic model
of the robot head, torso, and arms. For deictic gestures, which require the robot to point at objects in
its environment, the pose of the robot in the world frame of reference is also used.

If the arm cannot achieve the required pose for a deictic gesture, the robot rotates to make the pose
achievable, returning to the original orientation once the gesture is complete. Futhermore, the arm
returns to a neutral position by the robot’s side when the gesture is complete.

Iconic and symbolic gestures are defined by descriptors that specify the final gesture joint config-
uration and the manner in which that configuration is achieved. Descriptors comprise four elements.
Each element is a key-value pair, where the value can be an identifier, a number, a vector of numbers,
or a vector of a vector of numbers.

The first key-value pair specifies the gesture type (e.g., type iconic, type symbolic).
The second key-value pair identifies the ID number (e.g., ID 01).
The third element defines the number of waypoints in the trajectory, including the start gesture

joint configuration and the final gesture joint configuration.
The fourth element is a vector of joint angles vectors. The number of joint angle vectors is equal

to the number of way points, including the start joint configuration and the final gesture configuration.
Body gestures have three joints: knee pitch, hip pitch, hip roll. Iconic and symbolic gestures have
five joints: shoulder pitch, shoulder roll, elbow yaw, elbow roll, and wrist yaw. Before beginning the
gesture, the arm is moved from its current joint configuration to the start joint configuration, i.e., the
joint angles specified in the first vector in the vector of vector of joint angles.

The number of elements in the vector of joint angles is determined by the gesture type.
Descriptors for each gesture are stored in an external descriptor file.
If an iconic or symbolic gesture involves two arms, they are treated as a composite of two individ-

ual gestures, one for each arm.
The joint angles for bow and nod body gestures, as well as hand deictic gestures, are computed at

run time using the kinematic model of the robot and the bow angle, nod angle, or the location in the
environment to which the robot should point. The bow angle, nod angle, and pointing location are
provided as an input to the module, along with the time in milliseconds that should elapse between
the start of the gesture and the end of the gesture.

The pointing location with respect to the robot body, specified by the shoulder pitch and shoulder
roll angles, is computed from the pointing location in the world frame of reference (and supplied as
an input to the module) and the pose of the robot in the world frame of reference (provided by the

Date: 09/05/2024
Version: No 1.3

Page 12

D3.1 System Architecture

robotLocalization node. No waypoints are required for deictic gestures; the joints are actuated
to achieve the target joint angles, interpolating linearly, or adjusting the joint angles, joint angular
velocities, and joint accelerations to mimic biological movement by using a minimum jerk model of
biological motion.

It is assumed that the knee pitch angle is fixed during a bow body gesture and that the bow angle
corresponds to the change in the hip pitch angle with respect to the default hip pitch angle. Similarly,
it is assumed that the nod angle is the change in the head pitch angle with respect to the default head
pitch angle. Finally, it is assumed that the arm and fingers are straight in a deictic gesture, with fixed
values of elbow yaw, elbow roll, wrist yaw, and hand angles, so that the palm of the hand is directed
upwards.

The input to the module is a record comprising the gesture type (e.g., iconic, symbolic, deictic,
bow, nod), the gesture ID for symbolic or iconic gestures (e.g., 01), the duration of the gesture in mil-
liseconds, and either a bow angle in degrees (for a bow body gesture), or a nod angle in degrees (for a
nod body gesture), or the three dimensional coordinates of a pointing location (for a deictic gesture).
For deictic gestures, the module also inputs the current robot pose from the robotLocalization

node.
The output is a sequence of joint angles, joint angular velocities, and, optionally, joint angular

accelerations. Data is published on the appropriate topics, as required.
The names of the topics to be used for each actuator is read from a data file comprising a sequence

of key-value pairs. The key is the name of the actuator. The value is the topic name. There are two
data files, one for the physical robot and another for the simulator.

The node can run in normal mode or verbose mode. In verbose mode, data that is published to
topics is also printed to the terminal.

Configuration File

The operation of the gestureExecution node is determined by the contents of a configuration file,
gestureExecutionConfiguration.ini, that contains a list of key-value pairs, as shown below.

Date: 09/05/2024
Version: No 1.3

Page 13

D3.1 System Architecture

Key Values Effect
platform robot, simulator Specifies the platform on which the node is to

be run, i.e., the physical Pepper robot or the
Pepper simulator

interpolation linear, biological Specifies the interpolation type. This indicates
how the joint angles that define the trajectory in
joint space between the current joint angles and
the gesture joint angles are computed for body
gesture and hand deictic gestures, and between
way points for iconic and symbolic gestures.
The two options are: (a) independent linear in-
terpolation of each joint angle, and (b) biolog-
ical motion, selecting the sequence of joint an-
gular velocities and joint accelerations to form
a trajectory in time and joint space that mimics
biological movement.

gestureDescriptors gestureDescriptors.dat Specifies the filename of the file in which the
gesture descriptors are stored.

robotTopics pepperTopics.dat Specifies the filename of the file in which the
physical Pepper robot sensor and actuator topic
names are stored.

simulatorTopics simulatorTopics.dat Specifies the filename of the file in which the
simulator sensor and actuator topic names are
stored.

verboseMode true, false Specifies whether diagnostic data is to be
printed to the terminal.

Input Data File

This node does not read from an input data file.

Output Data File

This node does not write to an output data file.

Topics Subscribed

This node subscribes to one topic, published by robotLocalization node, which provides the pose
of the robot.

The following are the topics to which the gestureExecution node subscribes.

Topic Node Platform
/robotLocalization/pose robotLocalization Physical robot & simulator

Topics Published

The following are the topics to which the gestureExecution node publishes. These are specified in
the files identified by the robotTopics and simulatorTopics key-value pairs in the configuration

Date: 09/05/2024
Version: No 1.3

Page 14

D3.1 System Architecture

file.

Topic Actuator Platform
/pepper_dcm/RightHand_controller/ RHand Physical robot
follow_joint_trajectory

/pepper_dcm/LeftHand_controller/ LHand Physical robot
follow_joint_trajectory

/pepper_dcm/RightArm_controller/ RShoulderPitch, RShoulderRoll, Physical robot
follow_joint_trajectory RElbowYaw, RElbowRoll, RWristYaw

/pepper_dcm/LeftArm_controller/ LShoulderPitch, LShoulderRoll, Physical robot
follow_joint_trajectory LElbowYaw, LElbowRoll, LWristYaw

/pepper_dcm/Pelvis_controller/ HipRoll, HipPitch, KneePitch Physical robot
follow_joint_trajectory

/cmd_vel WheelFL, WheelFR, WheelB Physical robot
/pepper/RightArm_controller/ RElbowYaw, RElbowRoll Simulator
follow_joint_trajectory

/pepper/LeftArm_controller/ LElbowYaw, LElbowRoll Simulator
follow_joint_trajectory

/pepper/Pelvis_controller/ HipRoll, HipPitch, KneePitch Simulator
follow_joint_trajectory

/pepper/cmd_vel WheelFL, WheelFR, WheelB Simulator

Services Supported

This node provides and advertizes a server for a service /gestureExecution/perform_gesture
to initiate the performance of a required gesture. It uses a package-specific msg, Gesture.msg. The
message has several fields, as follows.

Field Field Value Field Type Units
gesture_type iconic, symbolic, deictic, bow, nod String
gesture_id <number> Integer
gesture_duration <number> Integer milliseconds

bow_angle <number> Integer degrees
nod_angle <number> Integer degrees
location_x <number> Real metres
location_y <number> Real metres
location_z <number> Real metres

If the perform_gesture request is successful, the service response is “1”; if it is unsuccessful,
it is “0”. The service is called by the scriptInterpreter node.

The following summarizes the services supported.

Service Message Value Effect
/gestureExecution/perform_gesture iconic, symbolic, Perform an iconic, symbolic,

deictic, bow, nod or deictic gesture

Services Called

This node does not call any services.

Date: 09/05/2024
Version: No 1.3

Page 15

D3.1 System Architecture

3.4 Knowledge Base

ROS Node Name

knowledgeBase

Functional Specification

This ROS node provides a server for a culture knowledge ontology and a related knowledge base
that, together, formalize the culturally sensitive knowledge that is documented in Deliverables D1.2
African Modes of Social Interaction and D1.3 Africa-centric Design Patterns. It provides the basis
for generating culturally sensitive actions by the robot when interacting with visitors in the use case
demonstrations.

The content and organization of the knowledge ontology and knowledge base has not yet been
defined. This will be done in Task 5.4.1 and documented in Deliverable D5.4.1.

The node can run in normal mode or verbose mode. In verbose mode, data that is published to
topics is also printed to the terminal.

Configuration File

The operation of the knowledgeBase node is determined by the contents of a configuration file that
contain a list of key-value pairs as shown below.
The configuration file is named knowledgeBaseConfiguration.ini.

Key Values Effect
knowledgeOntology knowledgeOntology.dat Specifies the filename of the file in which the-

knowledge ontology stored.
knowledgeBase knowledgeBase.dat Specifies the filename of the file in which the

knowledge base stored.
verboseMode true, false Specifies whether diagnostic data is to be printed

to the terminal.

Input Data File

This node reads the knowledge ontology file and the knowledge base file specified in the configuration
file.

Output Data File

This node does not write to an output data file.

Topics Subscribed

This node does not subscribe to any topics.

Topics Published

This node does not publish to any topics.

Date: 09/05/2024
Version: No 1.3

Page 16

D3.1 System Architecture

Services Supported

This node provides and advertizes a server for a service /knowledgeBase/query to extract required
knowledge from the knowledge base.

The type of the variable that is passed as an argument to the service call has not yet been defined.
This will be done when the knowledge ontology and knowledge base has been specified in Task 5.4.1
and when the specification of the script interpreter in Task 5.4.3 is complete.

The type of the service call return value has not yet been defined. Again, this will be done when the
knowledge ontology and knowledge base has been defined in Task 5.4.1 and when the specification
of the script interpreter in Task 5.4.3 is complete.

The service is called by the scriptInterpreter and robotNavigation nodes.
The following summarizes the services supported.

Service Message Value Effect
/knowledgeBase/query To be defined Extract required knowledge from the knowledge base

Services Called

This node does not call any services.

Date: 09/05/2024
Version: No 1.3

Page 17

D3.1 System Architecture

3.5 Overt Attention

ROS Node Name

overtAttention

Functional Specification

This ROS node provides the robot with the ability to direct the gaze of the robot to salient features in
the environment or to a given location in the environment.

There are three modes of operation: a social mode, a scanning mode, and a location mode. The
first is active when the robot is engaged in social interaction. In this mode, the salient features are
people’s bodies, faces, eyes, and voices. The second is active when the robot is not engaged in social
interaction and it is scanning the environment looking for people with whom to interact. In this mode,
the salient features also include objects of interest in the robot’s environment, including conspicuous
sounds. Aural attention has a higher priority than visual attention. In the second mode of operation,
the robot switches its focus of attention after a short period of time and does not return directly to the
original focus of attention, thereby scanning its environment. In the third mode of operation, the robot
gazes at a given location in its environment. If the head cannot achieve the required pose to gaze at a
given location, the robot rotates to make the pose achievable.

Two saliency maps are generated, one based on social features and one based on general conspic-
uous features. The first is based on the output of Task 4.2.1 Person Detection and Localization, Task
4.2.2 Face & Eye Detection and Localization, and Task 4.2.3 Sound Detection and Localization. The
second is based on information-theoretic saliency [1].

In the scanning attention node, three processes are active. The first is a winner-take-all process
to determine a single focus of attention from the candidates in the saliency map. This is effected
by a selective tuning model [2, 3, 4]. The second is an Inhibition-of-Return (IOR) mechanism that
attenuates the attention value of previous winning locations so that new regions become the focus of
attention. The third is an habituation process to gradually reduce the salience of the current focus of
attention, thereby ensuring that attention is fixated on a given point only for a limited period [5].

The robot’s gaze is directed by publishing the appropriate messages on the topic that controls the
headYaw and headPitch joints so that the gaze is centred on the focus of attention. This requires
the calibration of the x and y offset of the focus of attention in the image to the change in headYaw

and headPitch angles, respectively. In the case of aural attention to conspicuous sounds, it requires
the calibration of the angle of arrival of the sound with the change in headYaw angle. Fixation on
sounds will only control the headYaw angle, i.e., rotation in the horizontal plane about the head’s
z-axis.

These calibration constants are provided as parameters to the node. If the angle of rotation of the
headYaw joint is greater than some threshold (defined as a parameter), then after rotating the head
to fixate on the focus of attention, the base of the robot and the head rotate in opposite directions so
that the robot continues to gaze at the focus of attention while it realigns its head with its body. The
threshold for this head-torso realignment is provided as a parameter to the node.

The node has four inputs, all acquired by subscribing to the appropriate topics. These are the
outputs of the faceDetection node and the soundDetection node to be used to compute the
saliency map in social mode, an RGB image from one of the robot’s cameras (top forehead camera or
stereo camera) to be used to compute the saliency map in scanning mode, and, when attending to a
given location in the environment, the current robot pose from the robotLocalization node.

Date: 09/05/2024
Version: No 1.3

Page 18

D3.1 System Architecture

The node has three outputs, effected by publishing to the topic to control the headYaw and
headPitch joints, and, if required, the topic to control robot’s wheels and the robot’s angular ve-
locity when adjusting its pose to recentre the gaze or enable the gaze to be directed at a given location.
The third output is an RGB image depicting the saliency function and the selected focus of atten-
tion. The image is displayed in an openCV window when the node is operating in verbose mode (see
below).

The names of the topics to be used for each actuator are read from a data file comprising a sequence
of key-value pairs. The key is the name of the actuator. The value is the topic name. There are two
data files, one for the physical robot and another for the simulator.

To ensure that the robot does not rotate to realign its head and torso when navigating, attention
is enabled and disabled by the scriptInterpreter node using a dedicated service which the
overtAttention node advertizes and serves.

Setting the social, scanning, or location mode is also effected by the overtAttention node using
a dedicated service which the overtAttention node advertizes and serves.

The node can run in normal mode or verbose mode. In verbose mode, data that is published to
topics is also printed to the terminal, and output images are also displayed in openCV windows.

Configuration File

The operation of the overtAttention node is determined by the contents of a configuration file,
overtAttentionConfiguration.ini, that contain a list of key-value pairs as shown below.

Date: 09/05/2024
Version: No 1.3

Page 19

D3.1 System Architecture

Key Values Effect
platform robot, simulator Specifies the platform on which the node

is to be run, i.e., the physical Pepper robot
or the Pepper simulator

camera FrontCamera, StereoCamera Specifies which RGB camera to use.
realignmentThreshold <number> Specifies the threshold on the angular dif-

ference between head and base that must
be met before the head and base are re-
aligned.

xOffsetToHeadYaw <number> Specifies the calibration constant that de-
fines the conversion of the offset in the
(horizontal) x-axis of an image from the
image center to the change in headYaw

joint angle.
yOffsetToHeadPitch <number> Specifies the calibration constant that de-

fines the conversion of the offset in the
(vertical) y-axis of an image from the im-
age center to the change in headPitch
joint angle.

robotTopics pepperTopics.dat Specifies the filename of the file in which
the physical Pepper robot sensor and ac-
tuator topic names are stored.

simulatorTopics simulatorTopics.dat Specifies the filename of the file in which
the simulator sensor and actuator topic
names are stored.

verboseMode true, false Specifies whether diagnostic data is to be
printed to the terminal and diagnostic im-
ages are to be displayed in OpenCV win-
dows.

Input Data File

This node does not read from an input data file.

Output Data File

This node does not write to an output data file.

Topics Subscribed

This node subscribes to five topics: three from other nodes in the cssr_system package, and two
camera sensor topics. The specific camera sensor topic depends on whether the node is operating with
the physical robot or the simulator. These are are specified in the files identified by the robotTopics
and simulatorTopics key-value pairs in the configuration file.

The following are the topics to which the overtAttention node subscribes.

Date: 09/05/2024
Version: No 1.3

Page 20

D3.1 System Architecture

Topic Sensor / Node Platform
/faceDetection/direction faceDetection Physical robot & simulator
/robotLocalization/pose robotLocalization Physical robot & simulator
/soundDetection/data soundDetection Physical robot & simulator
/naoqi_driver/camera/front/image_raw FrontCamera Physical robot
/naoqi_driver/camera/stereo/image_raw StereoCamera Physical robot
/pepper/camera/front/image_raw FrontCamera Simulator

Topics Published

This node controls five joints: headYaw and headPitch to adjust the head gaze, and WheelFL,
WheelFR, and WheelB to rotate the robot and allow the gaze angle to be recentred.

The specific topics that are used to control these joints depend on whether the node is operating
with the physical robot or the simulator. The corresponding topics are identified in the file given by
the robotTopics and simulatorTopics key-value pairs in the configuration file.

The following are the topics to which the overtAttention node publishes.

Topic Actuator Platform
/pepper_dcm/Head_controller/ headYaw, headPitch Physical robot
follow_joint_trajectory

/cmd_vel WheelFL, WheelFR, WheelB Physical robot
/pepper/Head_controller/ headYaw, headPitch Simulator
follow_joint_trajectory

/pepper/cmd_vel WheelFL, WheelFR, WheelB Simulator

Services Supported

This node provides and advertizes a server for a service /overtAttention/set_mode to set the
social, scanning, or location mode of attention. It uses a package-specific msg, Mode.msg. The
message has four fields, as follows.

Field Field Value Field Type Units
state social, scanning, location String

location_x <number> Real metres

location_y <number> Real metres

location_z <number> Real metres

If the social/scanning/location request is successful, the service response is “1”; if it is unsuccessful,
it is “0”. The service is called by the scriptInterpreter node, setting the required mode of
attention.

This node also provides and advertizes a server for a service /overtAttention/set_activation
to enable and disable the operation of the node. It uses a package-specific msg, State.msg with four
fields. The first is string state, with a value of either “enabled” or “disabled”. Depending
on the string value, overtAttention will be enabled or disabled. If the enable/disable request is
successful, the service response is “1”; if it is unsuccessful, it is “0”. The service is called by the
scriptInterpreter node, enabling or disabling attention, as needed.

The following summarizes the services supported.

Date: 09/05/2024
Version: No 1.3

Page 21

D3.1 System Architecture

Service Message Value Effect
/overtAttention/set_activation enabled, disabled Enable or disable attention
/overtAttention/set_mode social, scanning, location Select mode of attention

Services Called

This node does not call any services.

Date: 09/05/2024
Version: No 1.3

Page 22

D3.1 System Architecture

3.6 Person Detection

ROS Node Name

personDetection

Functional Specification

This ROS node detects people in the field of view of the Pepper robot and determines their location. It
computes their position in an 2D image frame of reference and in the robot’s head 3D Cartesian frame
of reference. In addition, the region that the person occupies in the image is determined by computing
the bounding box surrounding the person. If more than one person is present in the robot’s field of
view, then all of them are detected and localized.

To ensure coherence in detection and localization over time, each detected person is labelled (e.g.,
“Person 1”) and the same label is assigned to that person in subsequent images. The label and the
bounding box are be colour-coded, assigning different colours to different people, and the same colour
to a given person in each image in a sequence of images. If that person is no longer detected in one
or more images (the number to be specified in a configuration parameter value) due to, for example,
a false reject error, then that label is not reused. If that person reappears in a subsequent image,
she or he is given a new label. As such, this module is only concerned with consistent detection of
people over time, not recognition of previously detected people, and it is assumed that people don’t
change between images. Consequently, a person in one image is deemed to be the same one in a
previous image if the spatial displacement of the person is less than a given tolerance (to specified by
a configuration parameter value).

The node has two inputs: an RGB image from one of the robot’s cameras and a depth image from
one of the robot’s depth sensors.

The node has three outputs: an RGB image and a depth image, with bounding boxes drawn around
each detected person in both images, and an array of records, one record for each person detected.

The components of a record are the person label, the 2D image coordinates denoting the centroid
of the bounding box, the width and height of the bounding box, a confidence value between 0 and 1
indicating the likelihood that the detection is not a false positive, and the 3D coordinates that define
the point that corresponds to the centroid of the bounding box surrounding the person in the image.

The RGB image and the depth image are displayed in an openCV window when the node is
operating in verbose mode (see below).

The array of records is published to a topic named /personDetection/data.
The names of the topics to be used for each sensor will be read from a data file comprising a

sequence of key-value pairs. The key is the name of the sensor. The value is the topic name. There
are two data files, one for the physical robot and another for the simulator.

The node can run in normal mode or verbose mode. In verbose mode, data that is published to
topics is also printed to the terminal, and output images are also displayed in openCV windows.

Configuration File

The operation of the personDetection node is determined by the contents of a configuration file,
personDetectionConfiguration.ini, that contain a list of key-value pairs as shown below.

Date: 09/05/2024
Version: No 1.3

Page 23

D3.1 System Architecture

Key Values Effect
platform robot, simulator Specifies the platform on which the node

is to be run, i.e., the physical Pepper robot
or the Pepper simulator

algorithm HOG, YOLO Specifies which algorithm to use.
camera FrontCamera, StereoCamera Specifies which RGB camera to use.
falseRejectTolerance <number> Specifies the number of images in which

a person is not detected before it will be
assigned a new label if and when it reap-
pears at the same location. For example,
a value 1 indicates that if the person is
not detected in one image but reappears
at that location in the next, it will be as-
signed the same label.

spatialTolerance <number> Specifies the spatial tolerance, given as a
percentage of the width of the image, for
a person to be assigned the same label.

robotTopics pepperTopics.dat Specifies the filename of the file in which
the physical Pepper robot sensor and ac-
tuator topic names are stored.

simulatorTopics simulatorTopics.dat Specifies the filename of the file in which
the simulator sensor and actuator topic
names are stored.

verboseMode true, false Specifies whether diagnostic data is to be
printed to the terminal and diagnostic im-
ages are to be displayed in OpenCV win-
dows.

Input Data File

This node does not read from an input data file.

Output Data File

This node does not write to an output data file.

Topics Subscribed

This node subscribes to three topics: two camera sensor topics and one depth sensor topic. The
specific camera and depth sensor topics depend on whether the node is operating with the physi-
cal robot or the simulator. These are are specified in the files identified by the robotTopics and
simulatorTopics key-value pairs in the configuration file.

The following are the topics to which the personDetection node subscribes.

Date: 09/05/2024
Version: No 1.3

Page 24

D3.1 System Architecture

Topic Sensor Platform
/naoqi_driver/camera/front/image_raw FrontCamera Physical robot
/naoqi_driver/camera/stereo/image_raw StereoCamera Physical robot
/naoqi_driver/camera/depth/image_raw DepthCamera Physical robot
/pepper/camera/front/image_raw FrontCamera Simulator
/pepper/camera/depth/image_raw DepthCamera Simulator

Topics Published

The following are the topics to which the personDetection node publishes.

Topic Sensor / Actuator / Node Platform
/personDetection/data faceDetection Physical robot & Simulator

Services Supported

This node does not support any services.

Services Called

This node does not call any services.

Date: 09/05/2024
Version: No 1.3

Page 25

D3.1 System Architecture

3.7 Robot Localization

ROS Node Name

robotLocalization

Functional Specification

This ROS node determines the pose (position and orientation) of the robot in a Cartesian world frame
of reference. It does this continuously, in real time, by updating the current pose based on relative pose
estimation, using either odometry or the robot’s inertial management unit IMU (or a combination of
both). Since pose estimation errors using relative techniques grow with time, the module periodically
resets its pose estimate using absolute pose estimation.

Absolute position estimation is accomplished by triangulation, using three landmarks (three are
required because their distance from the robot is not known since the robot’s range sensors are not
sufficiently accurate). Landmark recognition is accomplished both using SIFT (Scale Invariant Fea-
ture Transform) and YOLO (You Look Only Once) real-time object detection. The position of the
landmarks is extracted from a map of the environment. This map will be produced in Task 5.5.3
Environment Map Generation. The orientation of the robot is computed only for its rotation about
the Z-axis; adjustments of body posture through rotation about the X- and Y-axes are ignored. This
rotation angle is recovered by determining the direction given by the line of sight from the robot to
one of the landmarks, and adjusting for any rotation about the Z-axis of the robot’s head frame of
reference with respect to the base frame of reference.

The node has five inputs: For relative pose estimation, the input is the odometry data published by
the robot and data from the robot’s accelerometer and gyrometer. For absolute pose estimation, the
input takes the form of an RGB image from one of the robot’s cameras. Input is also be acquired from
the encoder on the head yaw actuator, i.e., the joint responsible for rotation in the azimuth (horizontal)
plane. The names of the topics to be used for each sensor will be read from a data file comprising a
sequence of key-value pairs. The key is the name of the sensor. The value is the topic name. There
are two data files, one for the physical robot and another for the simulator. The node also serves
a robotLocalization/reset_pose service to reset the pose of the robot using absolute pose
estimation. This service is typically called by the robotNavigation node.

The node has two outputs: an RGB image, with bounding boxes drawn around each detected
landmark, and a record with the 2D pose information: x and y coordinates and rotation about the
Z-axis. The image is displayed in an openCV window when the node is operating in verbose mode
(see below). The record is published on a topic named /robotLocalization/pose.

The node can run in normal mode or verbose mode. In verbose mode, data that is published to
topics is also printed to the terminal, and output images are also displayed in openCV windows.

Configuration File

The operation of the robotLocalization node is determined by the contents of a configuration file
that contain a list of key-value pairs as shown below.
The configuration file is named robotLocalizationConfiguration.ini.

Date: 09/05/2024
Version: No 1.3

Page 26

D3.1 System Architecture

Key Values Effect
platform robot, simulator Specifies the platform on which the node is to be

run, i.e., the physical Pepper robot or the Pepper
simulator

camera FrontCamera, StereoCamera Specifies which RGB camera to use.
resetInterval <number> Specifies the distance that can be travelled in cen-

timetres before the relative pose estimate is reset
using the absolute pose estimate.

robotTopics pepperTopics.dat Specifies the filename of the file in which the
physical Pepper robot sensor and actuator topic
names are stored.

simulatorTopics simulatorTopics.dat Specifies the filename of the file in which the
simulator sensor and actuator topic names are
stored.

verboseMode true, false Specifies whether diagnostic data is to be printed
to the terminal and diagnostic images are to be
displayed in OpenCV windows.

Input Data File

This node does not read from an input data file.

Output Data File

This node does not write to an output data file.

Topics Subscribed

This node subscribes to five topics: two camera sensor topics, an odometry topic, and inertial mea-
surement unit (IMU) topic, and a joint states topic for the head yaw angle. The specific camera topics
depend on whether the node is operating with the physical robot or the simulator. These are are
specified in the files identified by the robotTopics and simulatorTopics key-value pairs in the
configuration file.

The following are the topics to which the robotLocalization node subscribes.

Topic Sensor Platform
/naoqi_driver/camera/front/image_raw FrontCamera Physical robot
/naoqi_driver/camera/stereo/image_raw StereoCamera Physical robot
/naoqi_driver/odom Odometry Physical robot
/naoqi_driver/imu/base IMU Physical robot
/joint_states Head Yaw Physical robot
/pepper/camera/front/image_raw FrontCamera Simulator
/pepper/odom Odometry Simulator

IMU Simulator
/joint_states Head Yaw Simulator

Date: 09/05/2024
Version: No 1.3

Page 27

D3.1 System Architecture

Topics Published

The following are the topics to which the robotLocalization node publishes.

Topic Sensor / Actuator / Node Platform
/robotLocalization/pose gestureExecution Physical robot & Simulator

overtAttention

robotNavigation

scriptInterpreter

Services Supported

This node provides and advertizes a server for a service /robotLocalization/reset_pose to
reset the pose of the robot using absolute pose estimation. It uses a generic msg, Reset.msg with
just one field string, with a value “reset”. If the reset request is successful, the service response
is “1”; if it is unsuccessful, it is “0”. The service is called by the robotNavigation node.

The following summarizes the services supported.

Service Message Value Effect
/robotLocalization/reset_pose reset Reset robot pose

Services Called

This node does not call any services.

Date: 09/05/2024
Version: No 1.3

Page 28

D3.1 System Architecture

3.8 Robot Navigation

ROS Node Name

robotNavigation

Functional Specification

This ROS node controls the locomotion of the Pepper robot so that it navigates its environment, in
which there are fixed inanimate obstacles and moveable obstacles in the form of humans, from its
current position along the shortest path to a destination position and orientation identified in the use
case scenario script. Navigation is effected by identifying waypoints along the navigation path and
the robot moves from waypoint to waypoint.

The node optionally augments a metric workspace map of the robot’s environment with obstacles
corresponding to the location of any humans that have been detected in the robot’s field of view by
the personDetection node. The extent of the human obstacle is determined using culturally sen-
sitive proxemics. This augmented workspace map is then used to generate a configuration space map
that constrains the robot’s path from its current location to its target location using either Dijkstra’s
algorithm and the A* algorithm. Waypoints are identified using one of two candidate techniques:
equidistant waypoints and high path curvature waypoints. Locomotion from waypoint to waypoint is
effected using one of two locomotion algorithms: Multiple Input Multiple Output (MIMO) and divide
and conquer (DnQ).

The node has three inputs. The first is a record identifying the destination pose for the robot,
specified by the x and y coordinates of the location and the direction the robot should face (i.e., the
direction of the X-axis in the robot base frame, all specified in the workspace frame of reference).
This record is part of a message in a service call by the scriptInterpreter node.1 The second
is robot’s current pose. This is provided by messages published to the robotLocalization node.
The third input is the required cultural knowledge regarding proxemics. This is provided querying the
African cultural knowledge base using a service provided by the knowledgeBase node.

The node has two outputs. The first is sequence of forward velocity and angular velocity values
published on the relevant cmd_vel topic. The full name of the cmd_vel topic is will be read from a
data file comprising a sequence of key-value pairs. There are be two data files, one for the physical
robot and another for the simulator. The second is the planned path drawn on a configuration space
image. This image is displayed in an openCV window when the node is operating in verbose mode
(see below).

The node can run in normal mode or verbose mode. In verbose mode, data that is published to
topics is also printed to the terminal, and output images are also displayed in openCV windows.

Configuration File

The operation of the robotNavigation node is determined by the contents of a configuration file,
robotNavigationConfiguration.ini, that contain a list of key-value pairs as shown below.

1A ROS action will replace the service if it is determined that feedback on achievement of the navigation goal is required.

Date: 09/05/2024
Version: No 1.3

Page 29

D3.1 System Architecture

Key Values Effect
platform robot, simulator Specifies the platform on which the node is to be

run, i.e., the physical Pepper robot or the Pepper
simulator

map scenarioOneMap.dat Specifies the filename of the file in which the
workspace map is stored.

pathPlanning Dijkstra, A* Specifies the path planning algorithm to be used.
waypointNumber <number> Specifies the number of waypoints to be used.
waypointSelection equidistant, curvature Specifies the waypoint selection criterion to be

used.
socialDistance true, false Specifies whether or not to take into consideration

social constraints while navigating.
robotTopics pepperTopics.dat Specifies the filename of the file in which the

physical Pepper robot sensor and actuator topic
names are stored.

simulatorTopics simulatorTopics.dat Specifies the filename of the file in which the sim-
ulator sensor and actuator topic names are stored.

verboseMode true, false Specifies whether diagnostic data is to be printed
to the terminal and diagnostic images are to be
displayed in OpenCV windows.

Input Data File

This node does not read from an input data file.

Output Data File

This node does not write to an output data file.

Topics Subscribed

This node subscribes to one topic, as follows.

Topic Node Platform
/robotLocalization/pose robotLocalization Physical robot & Simulator

Topics Published

The following are the topics to which the personDetection node publishes.

Topic Sensor / Actuator / Node Platform
/cmd_vel WheelFL, WheelFR, WheelB Physical robot
/pepper/cmd_vel WheelFL, WheelFR, WheelB Simulator

Services Supported

This node provides and advertizes a server for a service /robotNavigation/set_goal to request
navigation to a given goal position and orientation. It uses a standard message type, geometry_msgs::Pose

Date: 09/05/2024
Version: No 1.3

Page 30

D3.1 System Architecture

defined in geometry_msgs/Pose.msg, to specify the pose with a geometry_msgs/Point posi-
tion and a geometry_msgs/Quaternion orientation. If the navigation request is successful, the ser-
vice response is “1”; if it is unsuccessful, it is “0”. The service is called by the scriptInterpreter
node.

The following summarizes the service supported.

Service Message Value Effect
/robotNavigation/set_goal <Point> <Quaternion> Define navigation goal pose

Services Called

This node calls the following two services.

Service Message Value Effect
/knowledgeBase/query To be defined Extract required knowledge from the cultural

knowledge base
/robotLocalization/reset_pose reset Reset the pose of the robot using absolute lo-

calization

The type of the variable that is passed as an argument to the /knowledgeBase/query service
has not yet been defined. This will be done when the node that services and advertizes these services
are fully specified. Similarly, the type of the service call return value has not yet been defined. Again,
this will be done when the node that services and advertizes these services are fully specified.

Date: 09/05/2024
Version: No 1.3

Page 31

D3.1 System Architecture

3.9 Script Interpreter

ROS Node Name

scriptInterpreter

Functional Specification

This ROS node provides that interprets the scenario script language developed in Task 5.4.2 and imple-
ments the specification of the two use case scenarios in that language, as documented in Deliverable
D5.4.2. In does so by recruiting the robot and visitor behaviors documented in Deliverables D2.2
and D2.3, and the cultural knowledge encapsulated in Deliverable D5.4.1, and realized in the robot
sensing modules developed in Work Package 4 and the robot behavior modules developed in Work
Package 5. The outcome of this task is described in Deliverable D5.4.3.

The dynamics of interaction between the robot and the visitor in the two use case scenarios are
specified by scripts written in the script language defined in Task 5.4.2. The scriptInterpreter
node interacts with other CSSR4Africa ROS nodes to realize these dynamics. It does this by calling
various services. These are detailed below.

The node can run in normal mode or verbose mode. In verbose mode, data that is published to
topics is also printed to the terminal.

Configuration File

The operation of the scriptInterpreter node is determined by the contents of a configuration file,
scriptInterpreterConfiguration.ini, that contain a list of key-value pairs as shown below.

Key Values Effect
scenarioSpecification scenarioSpecification.dat Specifies the filename of the file

in which ineration scenario script is
stored.

verboseMode true, false Specifies whether diagnostic data is to
be printed to the terminal.

Input Data File

This node reads the interaction scenario script file specified in the configuration file.

Output Data File

This node does not write to an output data file.

Topics Subscribed

This node subscribes to three topics, as follows.

Topic Node Platform
/speechEvent/text speechEvent Physical robot & simulator
/robotLocalization/pose /robotLocalization Physical robot & simulator
/personDetection/data /personDetection Physical robot & simulator

Date: 09/05/2024
Version: No 1.3

Page 32

D3.1 System Architecture

The /robotLocalization/pose and /personDetection/data topics are needed to allow nav-
igation with respect to people in the robot’s field of view.

Topics Published

This node does not publish to any topics.

Services Supported

This node does not provide and advertize any services.

Services Called

This node calls the following services to implement the interaction dynamics specified in the scenario
script.

Service Message Value Effect
/animateBehaviour/set_activation To be defined Enable and disable

the operation of
animateBehaviour

/gestureExecution/perform_gesture To be defined Initiate the performance of
a required gesture

/knowledgeBase/query To be defined Extract required knowl-
edge from the cultural
knowledge base

/overtAttention/set_mode To be defined Set the social, scanning, or
location mode of attention

/overtAttention/set_activation To be defined Enable and disable
the operation of
overtAttention

/robotNavigation/set_goal <Point><Quaternion> Navigate to a given loca-
tion

/tabletEvent/prompt_and_get_response To be defined Seek input from the visitor
/textToSpeech/say_text <string> Say a text message

The type of the variables that are passed as an argument to the service calls has not yet been
defined. This will be done when the node that services and advertizes these services are fully specified.
Similarly, the type of the service call return value has not yet been defined. Again, this will be done
when the node that services and advertizes these services are fully specified.

Date: 09/05/2024
Version: No 1.3

Page 33

D3.1 System Architecture

3.10 Sound Detection

ROS Node Name

soundDetection

Functional Specification

This ROS node detects a conspicuous sound within the robot’s hearing range and determines the
direction of arrival of the sound.

Localization is limited to the azimuth (i.e., horizontal) plane. If a sound is detected, its direction
of arrival will be determined in the robot’s Cartesian head frame of reference based on the interaural
time difference (ITD) between the arrival of the sound at the rfront left and front right microphones
on the top of the robot’s head. The node is tuned to detect human voices rather than ambient sounds
or background noise by using signal processing techniques such as band-pass filtering.

The node has one inputs: the audio signal from the front left, front right, back left, and back right
microphones, respectively. This data is published on /naoqi_driver/audio.

The node has two outputs: the angle of arrival in degrees relative to the robot head’s forward-
looking x-axis, and the audio signal of the detected sound captured by the front left microphone, from
onset of the sound to offset.

The angle is published to a topic named /soundDetection/direction. The channels of the
audio signal that is captured by the front left microphone is published to a topic named /soundDetection/signal.
The audio data is published in modified version of message of type
audio_common_msgs/AudioData. The final specification of this message type will be defined in
Task 4.2.3 Sound Detection and Localization.

The names of the topics to be used for each sensor will be read from a data file comprising a
sequence of key-value pairs. The key is the name of the sensor. The value is the topic name. There
are two data files, one for the physical robot and another for the simulator.

The node can run in normal mode or verbose mode. In verbose mode, data that is published to
topics is also printed to the terminal.

Configuration File

The operation of the soundDetection node is determined by the contents of a configuration file,
soundDetectionConfiguration.ini, that contain a list of key-value pairs as shown below.

Date: 09/05/2024
Version: No 1.3

Page 34

D3.1 System Architecture

Key Values Effect
platform robot, simulator Specifies the platform on which the node is to be

run, i.e., the physical Pepper robot or the Pepper
simulator

algorithm ITD Specifies the localization technique to be used.
lowFreqencyCutoff <number> Specifies the low cutoff frequency in the band-pass

filter in hertz.
highFreqencyCutoff <number> Specifies the low cutoff frequency in the band-pass

filter in hertz.
thresholdEnergy <number> Specifies the threshold energy of the audio signal

that qualifies it as a conspicuous sound.
robotTopics pepperTopics.dat Specifies the filename of the file in which the phys-

ical Pepper robot sensor and actuator topic names
are stored.

simulatorTopics simulatorTopics.dat Specifies the filename of the file in which the sim-
ulator sensor and actuator topic names are stored.

verboseMode true, false Specifies whether diagnostic data is to be printed to
the terminal.

Input Data File

This node does not read from an input data file.

Output Data File

This node does not write to an output data file.

Topics Subscribed

This node subscribes to two topics: two microphone sensor topics. The specific sensor topics depend
on whether the node is operating with the physical robot or the simulator. These are are specified in the
files identified by the robotTopics and simulatorTopics key-value pairs in the configuration
file.

The following are the topics to which the soundDetection node subscribes.

Topic Sensor Platform
/naoqi_driver/audio MicroFL_sensor, MicroFR_sensor Physical robot

MicroBL_sensor, MicroBR_sensor

Topics Published

The following are the topics to which the soundDetection node publishes.

Topic Sensor / Actuator / Node Platform
/soundDetection/direction overtAttention, speechEvent Physical robot & Simulator
/soundDetection/signal speechEvent Physical robot & Simulator

Date: 09/05/2024
Version: No 1.3

Page 35

D3.1 System Architecture

Services Supported

This node does not support any services.

Services Called

This node does not call any services.

Date: 09/05/2024
Version: No 1.3

Page 36

D3.1 System Architecture

3.11 Speech Event

ROS Node Name

speechEvent

Functional Specification

This ROS node detects an utterance, represented as an audio signal, spoken by an interaction partner
and transcribes it into written text.

The node uses a deep neural network that has been trained so that it can perform automated speech
recognition. In the case that the spoken utterance cannot be recognized, either because the sound is
not a spoken utterance or because it uses vocabulary on when the neural network has not been trained,
then the node flags this by producing a text that reads “Error: speech not recognized”.

The node has one input: an audio signal that is captured by the soundDetection module, pub-
lished on a topic named soundDetection/signal.

The node has one output: a string representing the message in the spoken audio signal. This is
published on a topic named speechEvent/text.

The node can run in normal mode or verbose mode. In verbose mode, data that is published to
topics is also printed to the terminal.

Configuration File

The operation of the speechEvent node is determined by the contents of a configuration file,
speechEventConfiguration.ini, that contain a list of key-value pairs as shown below.

Key Values Effect
language kinyarwanda, english Specifies the language in which the utterance is spoken.
verboseMode true, false Specifies whether diagnostic data is to be printed to the ter-

minal.

Input Data File

This node does not read from an input data file.

Output Data File

This node does not write to an output data file.

Topics Subscribed

The following are the topics to which the speechEvent node subscribes.

Topic Node Platform
soundDetection/signal soundDetection Physical robot & simulator

Date: 09/05/2024
Version: No 1.3

Page 37

D3.1 System Architecture

Topics Published

The following are the topics to which the speechEvent node publishes.

Topic Node Platform
/speechEvent/text scriptInterpreter Physical robot & Simulator

Services Supported

This node does not support any services.

Services Called

This node does not call any services.

Date: 09/05/2024
Version: No 1.3

Page 38

D3.1 System Architecture

3.12 Tablet Event

ROS Node Name

tabletEvent

Functional Specification

This ROS node provides a ROS service to display a message, which will typically be a menu of
interaction options, including a prompt requiring the selection of an option, wait for the visitor to
select an option, and return the option selected. This service is called by the scriptInterpreter
node, in the interaction manager subsystem.

The node has one input: a number indexing the message to be displayed on the tablet PC, passed
as an argument to a service call by the scriptInterpreter.

The node has one output: a number representing option selected by the visitor, returned by the
service call.

The node can run in normal mode or verbose mode. In verbose mode, data that is published to
topics is also printed to the terminal.

Configuration File

The operation of the tabletEvent node is determined by the contents of a configuration file,
tabletEventConfiguration.ini, that contains a list of key-value pairs as shown below.

Key Values Effect
menuDataFile tabletEventInput.dat Specifies the filename of the menu data.
verboseMode true, false Specifies whether diagnostic data is to be printed to the

terminal.

Input Data File

This node reads the data file specified by the menuDataFile key-value pair.

Output Data File

This node does not write to an output data file.

Topics Subscribed

This node does not subscribe to a ROS topic.

Topics Published

This node does not publish to a ROS topic.

Date: 09/05/2024
Version: No 1.3

Page 39

D3.1 System Architecture

Services Supported

This node provides and advertizes a server for a service /tabletEvent/prompt_and_get_response
to seek input from the visitor. It uses a package-specific msg, Prompt.msg with just one field
string message. The value of the field is text to be printed on the tablet screen (the format specifi-
cation is yet to be decided). The node then blocks for a predetermined time, waiting for the visitor to
select an option. If the visitor responds within the specified time, the service response is option number
1 – n; if they don’t, the service response is zero. The service is called by the scriptInterpreter
node, setting the required mode of attention.

The following summarizes the services supported.

Service Message Value Effect
/tabletEvent/prompt_and_get_response <string> Print message, wait for input, and set

response accordingly.

Services Called

This node does not call any services.

Date: 09/05/2024
Version: No 1.3

Page 40

D3.1 System Architecture

3.13 Text to Speech

ROS Node Name

textToSpeech

Functional Specification

This ROS node converts English, isiZulu, and Kinyarwanda text to speech. It uses a speech synthesis
engine to convert text to an audio file that can then be played on the robots loudspeakers.

The node has one input: a string with the text to be spoken.
The node has one output: an audio signal representing the message in the spoken audio signal.
The node can run in normal mode or verbose mode. In verbose mode, data that is published to

topics is also printed to the terminal.

Configuration File

The operation of the textToSpeech node is determined by the contents of a configuration file that
contain a list of key-value pairs as shown below.
The configuration file is named textToSpeechConfiguration.ini.

Key Values Effect
language kinyarwanda, isiZulu, english Specifies the language in which the text is written.
verboseMode true, false Specifies whether diagnostic data is to be printed

to the terminal.

Input Data File

This node does not read from an input data file.

Output Data File

This node does not write to an output data file.

Topics Subscribed

This node does not subscribe to any topics.

Topics Published

The following are the topics to which the textToSpeech node publishes. Note that the /speech

topic accepts a text string, not an audio signal, and works best with the English language. Alternatives
are being investigated.

Topic Actuator Platform
/speech LoudSpeakerLeft, LoudSpeakerRight Physical robot & Simulator

Date: 09/05/2024
Version: No 1.3

Page 41

D3.1 System Architecture

Services Supported

This node provides and advertizes a server for a service /textToSpeech/say_text to request the
conversion of a text string to an audio signal, and to play that audio on the robot’s loudspeakers.

It uses a standard message type, std_msgs::String defined in std_msgs/String.msg, to
specify the text. If the request is successful, the service response is “1”; if it is unsuccessful, it is “0”.
The service is called by the scriptInterpreter node.

The following summarizes the service supported.

Service Message Value Effect
/textToSpeech/say_text <string> Convert text to an audio signal and play it on the robot’s

loudspeakers

Services Called

This node does not call any services.

Date: 09/05/2024
Version: No 1.3

Page 42

D3.1 System Architecture

4 System Architecture in Detail

Figure 2 shows the CSSR4Africa system architecture specified using the ROS nodes, topics, and
services specified in Section 3.

Date: 09/05/2024
Version: No 1.3

Page 43

D3.1 System Architecture

pe
rs

on
D

et
ec

tio
n

fa

ce
D

et
ec

tio
n

 /p
er

so
nD

et
ec

tio
n/

da
ta

sc
rip

tIn
te

rp
re

te
r

 /p

er
so

nD
et

ec
tio

n/
da

ta

so
un

dD
et

ec
tio

n

 s

pe
ec

hE
ve

nt

 /s
ou

nd
D

et
ec

tio
n/

si
gn

al

ov

er
tA

tte
nt

io
n.

 /s
ou

nd
D

et
ec

tio
n/

di
re

ct
io

n

 /f
ac

eD
et

ec
tio

n/
da

ta

 /s
pe

ec
hE

ve
nt

/te
xt

 ta

bl
et

Ev
en

t

kn
ow

le
dg

eB
as

e

/ta
bl

et
Ev

en
t/p

ro
m

pt
_a

nd
_g

et
_r

es
po

ns
e

/k
no

w
le

dg
eB

as
e/

qu
er

y

/o
ve

rtA
tte

nt
io

n/
se

t_
m

od
e

/o

ve
rtA

tte
nt

io
n/

se
t_

ac
tiv

at
io

n

an
im

at
eB

eh
av

io
ur

/a

ni
m

at
eB

eh
av

io
ur

/s
et

_a
ct

iv
at

io
n

ge
st

ur
eE

xe
cu

tio
n

/g
es

tu
re

Ex
ec

ut
io

n/
pe

rfo
rm

_g
es

tu
re

 ro
bo

tN
av

ig
at

io
n

/ro
bo

tN
av

ig
at

io
n/

se
t_

go
al

 t
ex

tT
oS

pe
ec

h

/te
xt

To
Sp

ee
ch

/s
ay

_t
ex

t

Ac
tu

at
or

s

 /p
ep

pe
r_

dc
m

/H
ea

d_
co

nt
ro

lle
r/f

ol
lo

w
_j

oi
nt

_t
ra

je
ct

or
y

 /c
m

d_
ve

l

 /p
ep

pe
r_

dc
m

/R
ig

ht
H

an
d_

co
nt

ro
lle

r/f
ol

lo
w

_j
oi

nt
_t

ra
je

ct
or

y
 /p

ep
pe

r_
dc

m
/L

ef
tH

an
d_

co
nt

ro
lle

r/f
ol

lo
w

_j
oi

nt
_t

ra
je

ct
or

y
 /p

ep
pe

r_
dc

m
/R

ig
ht

Ar
m

_c
on

tro
lle

r/f
ol

lo
w

_j
oi

nt
_t

ra
je

ct
or

y
 /p

ep
pe

r_
dc

m
/L

ef
tA

rm
_c

on
tro

lle
r/f

ol
lo

w
_j

oi
nt

_t
ra

je
ct

or
y

 /p
ep

pe
r_

dc
m

/P
el

vi
s_

co
nt

ro
lle

r/f
ol

lo
w

_j
oi

nt
_t

ra
je

ct
or

y
 /c

m
d_

ve
l

 /p
ep

pe
r_

dc
m

/R
ig

ht
H

an
d_

co
nt

ro
lle

r/f
ol

lo
w

_j
oi

nt
_t

ra
je

ct
or

y
 /p

ep
pe

r_
dc

m
/L

ef
tH

an
d_

co
nt

ro
lle

r/f
ol

lo
w

_j
oi

nt
_t

ra
je

ct
or

y
 /p

ep
pe

r_
dc

m
/R

ig
ht

Ar
m

_c
on

tro
lle

r/f
ol

lo
w

_j
oi

nt
_t

ra
je

ct
or

y

 /p
ep

pe
r_

dc
m

/L
ef

tA
rm

_c
on

tro
lle

r/f
ol

lo
w

_j
oi

nt
_t

ra
je

ct
or

y

 /p
ep

pe
r_

dc
m

/P
el

vi
s_

co
nt

ro
lle

r/f
ol

lo
w

_j
oi

nt
_t

ra
je

ct
or

y

 /c
m

d_
ve

l

ro
bo

tL
oc

al
iz

at
io

n

 /r
ob

ot
Lo

ca
liz

at
io

n/
po

se

/ro
bo

tL
oc

al
iz

at
io

n/
po

se

 /r
ob

ot
Lo

ca
liz

at
io

n/
po

se
/ro

bo
tL

oc
al

iz
at

io
n/

po
se

/k
no

w
le

dg
eB

as
e/

qu
er

y

/ro
bo

tL
oc

al
iz

at
io

n/
re

se
t_

po
se

 /c
m

d_
ve

l

Se
ns

or
s

 /n
ao

qi
_d

riv
er

/c
am

er
a/

fro
nt

/im
ag

e_
ra

w

 /n
ao

qi
_d

riv
er

/c
am

er
a/

st
er

eo
/im

ag
e_

ra
w

 /n
ao

qi
_d

riv
er

/c
am

er
a/

de
pt

h/
im

ag
e_

ra
w

 /n
ao

qi
_d

riv
er

/a
ud

io

 /n
ao

qi
_d

riv
er

/c
am

er
a/

fro
nt

/im
ag

e_
ra

w

 /n
ao

qi
_d

riv
er

/c
am

er
a/

st
er

eo
/im

ag
e_

ra
w

 /n
ao

qi
_d

riv
er

/c
am

er
a/

fro
nt

/im
ag

e_
ra

w
 /n

ao
qi

_d
riv

er
/c

am
er

a/
st

er
eo

/im
ag

e_
ra

w

 /n
ao

qi
_d

riv
er

/c
am

er
a/

fro
nt

/im
ag

e_
ra

w

 /n
ao

qi
_d

riv
er

/c
am

er
a/

st
er

eo
/im

ag
e_

ra
w

 /n
ao

qi
_d

riv
er

/o
do

m
 /n

ao
qi

_d
riv

er
/im

u/
ba

se

 /j
oi

nt
_s

ta
te

s

Figure 2: The CSSR4Africa system architecture specified at the level of ROS nodes (thin border
rectangles), ROS topics (black lines), ROS services (red lines), and sources & sinks for sensor topics
and actuator topics (thick border rectangles).

Date: 09/05/2024
Version: No 1.3

Page 44

D3.1 System Architecture

References

[1] N. D. B. Bruce and J. K. Tsotsos. Saliency, attention, and visual search: An information theoretic
approach. Journal of Vision, 9(3):1–24, 2009.

[2] J. K. Tsotsos, S. Culhane, W. Wai, Y. Lai, N. David, and F. Nuflo. Modeling visual attention via
selective tuning. Artificial Intelligence, 78:507–547, 1995.

[3] J. K. Tsotsos. Cognitive vision need attention to link sensing with recognition. In H. I. Chris-
tensen and H.-H. Nagel, editors, Cognitive Vision Systems: Sampling the Spectrum of Approaches,
volume 3948 of LNCS, pages 25–36, Heidelberg, 2006. Springer.

[4] J. K. Tsotsos. A Computational Perspective on Visual Attention. MIT Press, Cambridge MA,
2011.

[5] A. Zaharescu, A. L. Rothenstein, and J. K. Tsotsos. Towards a biologically plausible active visual
search model. In L. Paletta, J. K. Tsotsos, E. Rome, and G. Humphreys, editors, Proceedings
of the Second International Workshop on Attention and Performance in Computational Vision,
WAPCV, volume LNCS 3368, pages 133–147, Berlin, 2004. Springer.

Date: 09/05/2024
Version: No 1.3

Page 45

D3.1 System Architecture

Principal Contributors

The main authors of this deliverable are as follows (in alphabetical order).

David Vernon, Carnegie Mellon University Africa.

Date: 09/05/2024
Version: No 1.3

Page 46

D3.1 System Architecture

Document History

Version 1.0
First draft.
David Vernon.
24 January 2024.

Version 1.1
Added a configuration file for tabletEvent.
David Vernon.
25 January 2024.

Version 1.2
Added key-value pair for personDetection and factDetection to specify the algorithm
to be used.
David Vernon.
01 February 2024.

Version 1.3
Updated topics for the animateBehaviour and gestureExecution nodes, replacing command,
with follow_joint_trajectory. Updated topics for the soundDetection node.
Removed /pepper/camera/stereo/image_raw topic for simulator in the faceDetection,
overtAttention, personDetection, and robotLocalization nodes.
Added scriptInterpreter to the list of nodes to which robotLocalization publishes.
David Vernon.
09 May 2024.

Date: 09/05/2024
Version: No 1.3

Page 47

	Introduction
	System Architecture Overview
	ROS Node Specifications
	Animate Behaviour
	Face Detection
	Gesture Execution
	Knowledge Base
	Overt Attention
	Person Detection
	Robot Localization
	Robot Navigation
	Script Interpreter
	Sound Detection
	Speech Event
	Tablet Event
	Text to Speech

	System Architecture in Detail
	References
	Principal Contributors
	Document History

