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Abstract—This extended abstract describes a research project
that implements non-verbal gestures on a social robot using
biological motion and investigates how humans perceive the
robot’s resultant behaviour. We show that incorporating bio-
logical motion significantly increases the perceived warmth of
robotic gestures and improves the overall interaction experience.
These findings highlight the importance of biologically inspired
movements in creating engaging social robots.

Index Terms—Biological motion, human-robot interaction, ges-
tures

I. INTRODUCTION

Nonverbal communication constitutes a fundamental aspect
of human interaction, encompassing a rich array of cues
such as body language, vocal intonation, gestures, and facial
expressions. These subtle signals significantly enhance inter-
personal communication by conveying nuanced information,
emotions, and intentions beyond the explicit content of spoken
language [1], [2]. While the importance of nonverbal cues in
human-robot interaction is increasingly recognized, existing
approaches often fall short in replicating the fluidity and
expressiveness of human gestures.

Biological motion is a fundamental characteristic of human
and animal movement, characterized by its fluidity, coordi-
nation, and expressiveness. By incorporating these organic
qualities into robotic motions, researchers aim to create more
natural and engaging human-robot interactions [3]

II. MODELS OF BIOLOGICAL MOTION

There are two principal approaches to modelling biological
motion: the Two-Thirds Power Law and the Minimum Jerk
model. We discuss both approaches in the following.

A. Two-Thirds Power Law

The Two-Thirds Power Law, a widely accepted principle
governing human upper-limb movement [4]–[7], has been
extensively documented across various motor behaviours. This
law has been observed in locomotion [8], ocular motion [9],
and other forms of human motion. The Two-Thirds Power Law
is expressed as follows:
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where V(t) is the tangential velocity at time t and R(t) is the
radius of curvature at that same instant.
The value of the β exponent has been empirically demon-
strated to be in reasonable agreement with the value of 1

3 over
a large class of human motion [6], [10], [11].

In case α = 0, the law can be simplified as:

V (t) = K(t)R(t)β (2)

from which we can derive the alternative formulation

A(t) = K(t)C(t)1−β = K(t)C(t)
2
3 (3)

hence, the two-thirds power law formulation, where A(t) =
V (t)
R(t) is the angular velocity, while C(t) = 1

R(t) is the
curvature.

B. Minimum-Jerk Model
The Two-Thirds Power Law presupposes a pre-planned

trajectory and is primarily concerned with the execution and/or
recognition of the planned or complete trajectory rather than
its formation [12]. Consequently, it does not explicitly address
the mechanisms underlying trajectory generation, and we
exploit an alternative formalization of biological motion based
on minimizing a global cost function. This cost function,
expressed in Equation 4 below, prioritizes smoothness when
generating movement trajectories [13].
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To enhance the social expressiveness of robots, Huber
et al. [14] proposed a decoupled minimum-jerk model that
incorporates a curvature parameter which allows the robot to
approach the target from different angles. Thus, the decoupled
approach offers greater flexibility in generating diverse and
contextually appropriate motions. The decoupled minimum
jerk trajectory is described by:
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where rz(t) is the trajectory in the z direction, with duration
tz , and rxy(t) is the trajectory in the xy plane, with duration
txy .

III. BIOLOGICAL MOTION TRAJECTORY GENERATION

The form of the motion trajectory that minimizes jerk is a
fifth-order polynomial in time [15] expressed in Equation 6
below:

θ(t) = a0 + a1t+ a2t
2 + a3t

3 + a4t
4 + a5t

5 (6)

where a0, ..., a5 are constants.
The boundary conditions consist of the position (θ), velocity

(θ̇), and acceleration (θ̈) at the start of the movement (time =
0) and at the finish (time = d). The chosen boundary conditions
are as follows:

θ(0) = ps; θ̇(0) = 0; θ̈(0) = 0

θ(d) = pf ; θ̇(d) = 0; θ̈(d) = 0
(7)

where ps is the start position, pf is the final position of the
trajectory.

Solving for the constants a0, ..., a5, the position (θ), velocity
(θ̇), and acceleration (θ̈) are expressed as:

θ(t) = ps + k
[
10(t/d)

3 − 15(t/d)
4
+ 6(t/d)

5
]

θ̇(t) =
k

d

[
30(t/d)

2 − 60(t/d)
3
+ 30(t/d)

4
]

θ̈(t) =
k

d2

[
60(t/d)− 180(t/d)

2
+ 120(t/d)

3
]

0 ≤ t ≤ d

(8)

where k is the movement amplitude given by k = pf − ps.

IV. GESTURE EXECUTION AND CONTROL

Based on the expressions for joint angle position, joint angle
velocity and joint angle acceleration in Equation 8 above,
a trajectory generation module computed desired joint angle
trajectories based on the selected gesture and its parame-
ters. These trajectories were subsequently transformed into
joint-level commands through inverse kinematics and motion
control, ensuring smooth execution by a Pepper robot. The
architecture of the gesture control system is shown in Figure
1.

The implementation of the biological motion for gesture
execution on the Pepper robot is realised as a ROS node
that provides a ROS service which listens for requests to the
gesture service and executes the requested gesture based on the
parameters provided. These include the gesture type, duration,
angles of bowing and nodding, as well as the target coordinate
for pointing in the world. To interact with the gesture service,
a client node sends requests to the service with the required
gesture parameters.

V. EXPERIMENTAL DESIGN

A controlled within-subjects experiment was conducted to
assess the impact of gestures executed using biological motion
on human perceptions of the Pepper robot’s social attributes.
Participants were exposed to two experimental conditions
without prior knowledge of the variations in the gesture
execution principle in each condition.
Condition 1: Non-biological (control) gestures
In the control condition, participants observed the Pepper
robot performing a set of gestures generated without the
incorporation of biological motion principles. These gestures
were executed using a trapezoidal motion profile, which lacked
the natural fluidity and expressiveness of the biological motion
profile.
Condition 2: Biological motion profile
In this condition, participants observed the Pepper robot per-
forming a similar set of gestures using the biological motion
model implemented in this research. These gestures included
deictic (pointing) gestures, as well as body gestures such as
bowing and nodding were designed to exhibit the principles
of biological motion, which encompasses smooth, coordinated
movements and natural velocity profiles.

To assess the impact of biologically inspired gestures on
perceived social attributes, participants completed the RoSAS
scale following exposure to both experimental conditions. This
19-item questionnaire, adapted from the original RoSAS scale
[16], measured warmth and discomfort on a 7-point Likert
scale. By focusing on these dimensions, the study aimed to
quantify participants’ immediate impressions of the robot’s
gestures, allowing for quantitative analysis of the potential
differences between the biological motion and non-biological
motion conditions

VI. RESULTS

A. Warmth Dimension Analysis

The warmth dimension of the robot was evaluated across
four criteria: naturalness, fluidity, expressiveness, and per-
ceived friendliness. The linear velocity profile yielded a mean
warmth score of 4.4973 (standard error = 0.2015, standard
deviation = 0.83079), while the biological motion profile
achieved a significantly higher mean warmth score of 5.4920
(standard error = 0.2007, standard deviation = 0.8276).

These results provide insights into how participants per-
ceived the robot’s gestures in terms of warmth, highlighting
the effectiveness of the biological motion profile in conveying
warmth in human-robot interaction scenarios. These results
suggest that leveraging biological motion principles can en-
hance positive user experiences during human-robot interac-
tions. Higher ratings of fluidity and naturalness indicate that
biological motion helped the robot’s movements appear more
aligned with human motion patterns. This increased sense
of familiarity and biomimicry can reduce the perception of
robots as mechanical, unfamiliar entities, potentially mitigating
feelings of discomfort during interactions.



Fig. 1. Architecture of the Gesture Control System

Fig. 2. Mean of Responses in the Warmth and Discomfort Dimensions of both Conditions

B. Discomfort Dimension Analysis

The discomfort dimension was assessed based on perceived
unnaturalness, awkwardness, and unease. Participants rated
the linear velocity profile with a mean discomfort score of
3.5147 (standard error = 0.2803, standard deviation = 1.1557),
while the biological motion profile elicited significantly lower
discomfort, scoring 2.5515 (standard error =0.2414, standard
deviation = 0.9952). As lower scores indicate less discomfort,
these results demonstrate that the biological motion condition
led to a more comfortable interaction experience.

The overall comparison of the means obtained from the two
conditions in both the warmth and discomfort is shown in
Figure 2 above.

The findings underscore the significance of biological mo-
tion in mitigating discomfort during human-robot interactions.
By reducing perceived awkwardness, unnaturalness, and un-
certainty, biologically inspired gestures enhance user expe-
rience. This suggests that aligning robotic movements with
human movement patterns fosters a sense of familiarity and
reduces the uncanny valley effect, ultimately leading to more
comfortable and engaging interactions.

VII. DISCUSSION

This study demonstrates that using a biological motion
profile, obeying a minimum jerk law, increases the perceived
warmth of robot gestures compared to a linear velocity pro-
file. Additionally, participants reported less discomfort dur-
ing interactions with gestures performed using the biological
motion profile. The finding that biological motion increases
the perceived warmth of robot gestures aligns with previous
research highlighting the importance of natural and human-like
movements in enhancing the social attributes of robots.

Incorporating biological motion helps reduce the uncanny
valley effect [17], a phenomenon that can lead to discomfort
and aversion when robots appear almost human-like but not
quite natural. By aligning robot movements with familiar
human motion patterns, users are less likely to experience the
unsettling feelings associated with the uncanny valley, pro-
moting a greater sense of familiarity and reducing discomfort
during interactions.

By effectively mitigating the uncanny valley effect, the
integration of biological motion can enhance user experience.
The resulting increased sense of familiarity and comfort



fosters more natural and engaging human-robot interactions.
This aligns with previous research demonstrating the positive
impact of warmth and competence on user perceptions of
service robots [18]. Furthermore, the phenomenon of motor
contagion, as explored by Bisio et al. [19] and Breazeal et
al. [20], suggests that motions with a biological profile can
facilitate a deeper connection between humans and robots,
leading to more spontaneous and pleasant interactions.

Overall, the incorporation of biological motion profiles into
the movements and gestures of social robots holds promise
for enhancing gestural communication, mitigating discomfort,
and fostering more natural, engaging interactions.
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